福田の数学〜一橋大学2023年文系第4問〜群数列 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2023年文系第4問〜群数列

問題文全文(内容文):
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。

2023一橋大学文系過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。

2023一橋大学文系過去問
投稿日:2023.05.29

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 

【数B】漸化式:東大1995年 タイルの敷き詰め

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイルがある。縦2,横nの長方形の部屋をこれらのタイルで過不足なく敷き詰めることを考える。その並べ方の総数をA[n]で表す。ただし,nは正の整数である。たとえば$ A_1=1, A_2=3, A_3=5$ である。このとき,以下の問いに答えよう。
(1)$n≧3$のとき,$A_n$を$A_{n-1},A_{n-2}$を用いて表そう。
(2)$A_n$をnで表そう。
この動画を見る 

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る 

福田の数学〜東京大学2025理系第5問〜バブルソートが題材となった数が整列する条件を漸化式にする

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$2$以上の整数とする。

$1$から$n$までの数字が書かれた札が各$1$枚ずつ合計$n$枚あり、

横一列におかれている。

$1$以上$(n-1)$以下の整数$i$に対して、

次の操作$(T_i)$を考える。

$(T_i)$左から$i$番目の札の数字が、

左から$(i+1)$番目の札の数字よりも大きければ、

これら$2$枚の札の位置を入れ替える。

そうでなければ、札の位置を変えない。

最初の状態において札の数字は左から

$A_1,A_2,\cdots A_n$であったとする。

この状態から$(n-1)$回の操作$(T_1),(T_2),\cdots (T_{n-1})$を

順に行った後、続けて$(n-1)$回の操作

$(T_{n-1}),\cdots ,(T_2),(T_1)$を順に行ったところ、

札の数字は左から$1,2,\cdots ,n$と小さい順に並んだ。

以下の問いに答えよ。

(1)$A_1$と$A_2$の少なくとも一方は$2$以下であることを示せ。

(2)最初の状態としてありうる札の数字の並び方

$A_1,A_2,\cdots 、A_n$no総数を$c_n$とする。

$n$が$4$以上の整数であるとき、

$c_n$を$c_{n-1}$と$c_{n-2}$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

福田のおもしろ数学311〜n個の積の和を最大にする方法

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$個の実数 $a_1\leqq a_2\leqq \cdots \leqq a_n$と$n$個の実数を適当に並べたものを$b_1, b_2, \cdots ,b_n $ として、$s = a_1b_1+a_2b_2+\cdots + a_nb_n $を最大にするには$b_1 \leqq b_2 \leqq \cdots \leqq b_n $となるように並べたときである。これを証明して下さい。(ただし、$n\geqq 2$とする)
この動画を見る 
PAGE TOP