大学入試問題#148 京都大学(1972) 積分と極限 - 質問解決D.B.(データベース)

大学入試問題#148 京都大学(1972) 積分と極限

問題文全文(内容文):
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。

出典:1972年京都大学 入試問題
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。

出典:1972年京都大学 入試問題
投稿日:2022.03.22

<関連動画>

09奈良県教員採用試験(数学:4番 積分)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
4⃣ $a_n = 1+ \frac{1}{2}+ \frac{1}{3}+ \cdots + \frac{1}{n} - logn$
(1)$a_n>0$を示せ。
(2)$\displaystyle \lim_{ n \to \infty } a_n $が存在することを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系036〜極限(36)関数の極限、色々な極限(6)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 色々な極限(6)
$\displaystyle \lim_{x \to 0}(\frac{e^x+1}{2})^{\frac{1}{x}}$を2通りの方法で求めよ。
この動画を見る 

17神奈川県教員採用試験(数学:9番 無限級数)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
9⃣$\displaystyle \sum_{n=1}^\infty (\frac{1}{2})^n sin\frac{n \pi}{ 2}$
この動画を見る 

【数Ⅲ】【関数と極限】数列の極限5 ※問題文は概要欄

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{ a_n \}, \{ b_n \}, \{ c_n \}$について、次の事柄は正しいか。
正しいものは証明し、正しくないものは、その反例をあげよ。
ただし、$\alpha$は定数とする。
(1) $\displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = \infty$ ならば $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0$
(2) $ \displaystyle \lim_{ n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = 0$ ならば $ \displaystyle \lim_{n \to \infty}a_nb_n=0$
(3) $ \displaystyle b_n \lt a_n \lt c_n , \lim_{n \to \infty}(c_n-b_n)=0$ ならば $ \{ a_n \}$は収束する。
(4) $ \displaystyle \lim_{n \to \infty}(a_n-b_n)=0, \lim_{n \to \infty}a_n =\alpha$ ならば $\displaystyle \lim_{n \to \infty}b_n= \alpha$
この動画を見る 

【高校数学】分数関数の漸近線とグラフの簡単な求め方!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。また,その漸近線を求めよ。
$y=\frac{–2x–10}{x+3}$
この動画を見る 
PAGE TOP