問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
チャプター:
0:00 問題概要
0:31 3点が一直線上にある、ときたら…?
0:50 重心の位置ベクトル
1:20 なぜ始点をOにするのか?
1:33 実数kを掛けるのはどっち?
2:45 係数足して1、の解法を使うためにOMベクトルを召喚
3:05 欲しいもの(OMベクトル)を強引に作って、微調整をしていく方法
4:00 状況を図示、証明終了
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
投稿日:2025.08.21





