【数Ⅱ】領域内の点の最大値・最小値【具体例を作って方針を立てよう】 - 質問解決D.B.(データベース)

【数Ⅱ】領域内の点の最大値・最小値【具体例を作って方針を立てよう】

問題文全文(内容文):
不等式$x^2+y^2 \leqq 9$,$y \geqq \dfrac{1}{3}x-1$で表される領域をDとする.
領域D内の点$(x,y)$について,-$x+y$の最大値・最小値を求めよ.
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
不等式$x^2+y^2 \leqq 9$,$y \geqq \dfrac{1}{3}x-1$で表される領域をDとする.
領域D内の点$(x,y)$について,-$x+y$の最大値・最小値を求めよ.
投稿日:2022.04.12

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(1)〜相加平均と相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ x \gt 0における(x+\frac{1}{x})(x+\frac{2}{x}) の最小値は\ \boxed{\ \ ア\ \ }\ である。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生023〜円の外部から引いた接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と接線\\
点A(2,4)から\\
円C:(x+2)^2+(y-2)^2=10\\
へ引いた接線の方程式を求めよ。
\end{eqnarray}
この動画を見る 

超基本問題 対数方程式

アイキャッチ画像
単元: #対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023長崎県立大学過去問題
解け
$log_{3}(9x+18)+log_3(x+3)=3$
この動画を見る 

バングラデシュ数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{cases}
x+y = 1 \\
x^5+y^5 = 31
\end{cases}
$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]aを実数とし、f(x)=x^3-6ax+16\\
(1)y=f(x)のグラフの概形は\\
a=0のとき、\boxed{\ \ ア\ \ }\\
a \gt 0のとき、\boxed{\ \ イ\ \ }\\
である。\\
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }については、最も適当なものを、次の⓪~⑤のうちから\\
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
(※選択肢は動画参照)\\
\\
\\
(2)a \gt 0とし、pを実数とする。座標平面上の曲線y=f(x)と直線y=p\\
が3個の共有点をもつようなpの値の範囲は\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }\\
である。\\
p=\boxed{\ \ ウ\ \ }のとき、曲線y=f(x)と直線y=pは2個の共有点をもつ。\\
それらのx座標をq,r(q \lt r)とする。曲線y=f(x)と直線y=p\\
が点(r,p)で接することに注意すると\\
q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}\\
と表せる。\\
\\
\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪2\sqrt2a^{\frac{3}{2}}+16 ①-2\sqrt2a^{\frac{3}{2}}+16\\
②4\sqrt2a^{\frac{3}{2}}+16 ③-4\sqrt2a^{\frac{3}{2}}+16\\
④8\sqrt2a^{\frac{3}{2}}+16 ⑤-8\sqrt2a^{\frac{3}{2}}+16\\
\\
(3)方程式f(x)=0の異なる実数解の個数をnとする。次の⓪~⑤のうち、\\
正しいものは\boxed{\ \ ケ\ \ }と\boxed{\ \ コ\ \ }である。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(解答の順序は問わない。)\\
\\
⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1\\
②n=2ならばa \lt 0 ③a \lt 0ならばn=2\\
④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3\\
\\
\\
[2]b \gt 0とし、g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2とおく。\\
座標平面上の曲線y=g(x)をC_1, 曲線y=h(x)をC_2とする。\\
\\
\\
C_1とC_2は2点で交わる。これらの交点のx座標をそれぞれ\alpha,\beta\\
(\alpha \lt \beta)とすると、\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }である。\\
\alpha \leqq x \leqq \betaの範囲でC_1とC_2で囲まれた図形の面積をSとする。また、\\
t \gt \betaとし、\beta \leqq x \leqq tの範囲でC_1とC_2および直線x=tで囲まれた図形の\\
面積をTとする。\\
このとき\\
S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx\\
T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx\\
S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx\\
であるので\\
S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)\\
が得られる。\\
したがって、S=Tとなるのはt=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ bのときである。\\
\\
\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}\\
②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}\\
④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}\\
⑥2g(x) ⑦2h(x)
\end{eqnarray}
この動画を見る 
PAGE TOP