数と証明 4STEP数Ⅱ 6,7,25 3次式の展開、因数分解、割り算【さこすけ’s サイエンスがていねいに解説】 - 質問解決D.B.(データベース)

数と証明 4STEP数Ⅱ 6,7,25 3次式の展開、因数分解、割り算【さこすけ’s サイエンスがていねいに解説】

問題文全文(内容文):
6(a+b+c)³を展開せよ。

7 次の式を因数分解せよ。
(1) x³-3x²+6x-8 (2)8a³-36a²b+54ab²-27b³

25 次の式A,Bをxについての多項式とみて、AをBで割った商と余りを求めよ。
(1)A=2x³+7ax²+5a²x+6a³, B=x+3a
(2)A=x³-3ax²+4a³, B=x²-2ax-2a²
(3)A=x⁴+x²y²+y⁴, B=x²+xy+y²
(4)A=2x²+4xy-3y²-5x+2y-1, B=x+y+2
チャプター:

0:00 オープニング
0:05 問題6解説
1:16 問題7解説
3:58 問題25(1)解説
5:46 問題25(2)解説
7:00 問題25(3)解説
8:51 問題25(4)解説
11:20 エンディング

単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):
6(a+b+c)³を展開せよ。

7 次の式を因数分解せよ。
(1) x³-3x²+6x-8 (2)8a³-36a²b+54ab²-27b³

25 次の式A,Bをxについての多項式とみて、AをBで割った商と余りを求めよ。
(1)A=2x³+7ax²+5a²x+6a³, B=x+3a
(2)A=x³-3ax²+4a³, B=x²-2ax-2a²
(3)A=x⁴+x²y²+y⁴, B=x²+xy+y²
(4)A=2x²+4xy-3y²-5x+2y-1, B=x+y+2
投稿日:2024.06.04

<関連動画>

数と証明 4STEP数Ⅱ 14,15 二項定理の活用【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):


14 次の□に入る数を,二項定理を用いて求めよ。
${}_{101} \mathrm{ C }_0+{}_{101} \mathrm{ C }_2+{}_{101} \mathrm{ C }_4+…$$…+{}_{101} \mathrm{ C }_{98}+{}_{101} \mathrm{ C }_{100}=2^□$

15 二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。

(1)$(1+\dfrac{1}{n})^n>2$

(2) x>0 のとき $(1+x)^n>1+nx+\dfrac{n(n-1)}{2}x^2$




この動画を見る 

π<3 .3 示せ(類)浜松医科大学2022

アイキャッチ画像
単元: #式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \pi<3.3を示せ.$
この動画を見る 

【数Ⅱ】式と証明:二項定理の使い方編

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
①(3x+1)⁵を展開したときのx⁴の係数
②(2-x)¹⁰を展開したときのx⁷の係数 をそれぞれ求めよ。
この動画を見る 

kとk+1ということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ
この動画を見る 

気持ちいい別解あり!これ解ける?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$を正の数とするとき、不等式
$2\left( -\frac{a+b}{2}-\sqrt{ab}\right)≦3\left(\frac{a+b+c}{2}-\sqrt[3]{abc}\right)$
を証明せよ。

また、等号が成立するのはどんな場合か。
この動画を見る 
PAGE TOP