【高校数学】1次不定方程式例題演習~応用例題~ 5-9.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】1次不定方程式例題演習~応用例題~ 5-9.5【数学A】

問題文全文(内容文):
6で割ると1余り、11で割ると5余るような自然数のうち3桁で最小のものを求めよ。
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
6で割ると1余り、11で割ると5余るような自然数のうち3桁で最小のものを求めよ。
投稿日:2022.01.08

<関連動画>

割り算 余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022^2$を$2021$で割った余りは?
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(3)〜じゃんけんの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)4人でじゃんけんを1回するとき、ちょうど2人が勝つ確率は$\boxed{\ \ ウ\ \ }$であり、
また、だれも勝たない確率は$\boxed{\ \ エ\ \ }$である。

2021立教大学理学部過去問
この動画を見る 

9つの正方形と角の和

アイキャッチ画像
単元: #数学(中学生)#中2数学#数Ⅰ#数A#図形の性質#図形と計量#三角形と四角形#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a + \angle b +\angle c=? $
*図は動画内参照
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第5問〜平面幾何

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、$AB=3$, $BC=4$, $AC=5$とする。
$\angle BAC$の二等分線と辺$BC$との交点を$D$とすると
$BD=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$, $AD=\displaystyle \frac{\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}}{\boxed{\ \ オ\ \ }}$
である。
また、$\angle BAC$の二等分線と$\triangle ABC$の外接円$O$との交点で点$A$とは異なる
点を$E$とする。$\triangle AEC$に着目すると
$AE=\boxed{\ \ カ\ \ }\sqrt{\boxed{\ \ キ\ \ }}$
である。
$\triangle ABC$の2辺$AB$と$AC$の両方に接し、外接円$O$に内接する円の中心を
$P$とする。円$P$の半径を$r$とする。さらに、円$P$と外接円$O$との接点を
$F$とし、直線$PF$と外接円$O$との交点で点$F$とは異なる点を$G$とする。
このとき
$AP=\sqrt{\boxed{\ \ ク\ \ }}\ r$, $PG=\boxed{\ \ ケ\ \ }-r$
と表せる。したがって、方べきの定理により$r=\displaystyle \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。

$\triangle ABC$の内心を$Q$とする。内接円$Q$の半径は$\boxed{\ \ シ\ \ }$で、$AQ=\sqrt{\boxed{\ \ ス\ \ }}$
である。また、円$P$と辺$AB$との接点を$H$とすると、$AH=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
以上から、点$H$に関する次の$(\textrm{a}),(\textrm{b})$の正誤の組合せとして正しいもの
は$\boxed{\boxed{\ \ タ\ \ }}$である。


$(\textrm{a})$点$H$は3点$B,D,Q$を通る円の周上にある。
$(\textrm{b})$点$H$は3点$B,E,Q$を通る円の周上にある。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

X=❓  パックマン再び

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
この動画を見る 
PAGE TOP