こういう問題に苦手意識ある人は必見です【甲南大学】【数学 入試問題】 - 質問解決D.B.(データベース)

こういう問題に苦手意識ある人は必見です【甲南大学】【数学 入試問題】

問題文全文(内容文):
次の2つの等式を満たす多項式$(x),g(x)$及び定数$a$を求めよ。

$\displaystyle \int_{1}^{x} f(t) dt=2xg(x)-3x+a $

$g(x)=x^2+x \displaystyle \int_{0}^{1} f(t)dx+1$

甲南大過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の2つの等式を満たす多項式$(x),g(x)$及び定数$a$を求めよ。

$\displaystyle \int_{1}^{x} f(t) dt=2xg(x)-3x+a $

$g(x)=x^2+x \displaystyle \int_{0}^{1} f(t)dx+1$

甲南大過去問
投稿日:2022.10.28

<関連動画>

【高校数学】毎日積分28日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1x\sqrt{-x^2+2x}dx$
これを解け.
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

【高校数学】福島大学の積分の問題をその場で解説しながら解いてみた!毎日積分98日目~47都道府県制覇への道~【㊶福島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【福島大学 2023】
$a,p$を実数とする。曲線$C:y=2log_e x$が直線$l:y=ax$と点$P(p,ap)$で接している。このとき、以下の問いに答えなさい。
(1) 実数$p,a$の値を求めなさい。
(2) 曲線$C$と直線$x=p,y=0$で囲まれた図形の面積$S$を求めなさい。
(3) 関数$y=x(log_e x)^2$を$x$について微分しなさい。
(4) 曲線$C$と直線$l,y=0$で囲まれた図形を$x$軸のまわりに1回転してできる立体の体積$V$を求めなさい。
この動画を見る 

大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$

出典:2009年奈良教育大学
この動画を見る 

【高校数学】毎日積分50日目 実践編①回転体シリーズ~必要な平面を図示~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内で4点(0,0,0),(1,0,0),(1,1,0),(0,1,0)を頂点とする正方形の周および内部をKとし、Kをx軸のまわりに1回転させてできる立体をKx,Kをy軸のまわりに1回転させてできる立体をKyとする。さらに、KxとKyの共通部分をLとし、KxとKyの少なくともどちらか一方に含まれる点全体からなる立体をMとする。このとき、以下の問いに答えよ。
(1) Kxの体積を求めよ。
(2)平面$z=t$がKxと共有点をもつような実数tの値の範囲を答えよ。またこのとき、Kxを平面$z=t$で切った断面積A(t)を求めよ。
(3)平面$z=t$がLと共有点をもつような実数tの値の範囲を答えよ。また、このとき、Lを平面$z=t$で切った断面積B(t)を求めよ。
(4) Lの体積を求めよ。
(5) Mの体積を求めよ。
この動画を見る 
PAGE TOP