#高知工科大学2020 #定積分 - 質問解決D.B.(データベース)

#高知工科大学2020 #定積分

問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{1}^{\sqrt{ e }} \displaystyle \frac{(log x)^3}{x} dx$

出典:2020年高知工科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{1}^{\sqrt{ e }} \displaystyle \frac{(log x)^3}{x} dx$

出典:2020年高知工科大学
投稿日:2024.07.13

<関連動画>

大学入試問題#297 産業医科大学(2010) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\cos\ x-x^2-1}{x^2}$

出典:2010年産業医科大学 入試問題
この動画を見る 

【化学】有機化学:2021年度慶應義塾大学薬学部大問4(2)チャプター1

アイキャッチ画像
単元: #化学#有機#大学入試過去問(化学)#酸素を含む脂肪族化合物#芳香族化合物#慶應義塾大学#理科(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度慶應義塾大学薬学部大問4(2)チャプター1
化合物Aは、水素原子、炭素原子、酸素原子のみから構成され、ベンゼン環を2個含む分子量500以下のエステルである。0.846gの化合物Aを完全燃焼すると、二酸化炭素2.51gと水0.594gを生じた。化合物Aに水酸化ナトリウム水溶液を加えて加熱し加水分解すると、化合物Bのナトリウム塩と化合物Cが生成した。化合物Bを過マンガン酸カリウムで酸化すると化合物Dが生成した。化合物Dと化合物Eを次々と縮合重合させると、高分子化合物Fが得られ、これは繊維として衣料品に用いられる他、樹脂としてペットボトルの原料となる。
一方、化合物Cに濃硫酸を加え170°Cで加熱したところ、化合物Cおよびその構造異性体H、Iが生成した。化合物Hと化合物Iはシスートランス異性体の関係にあり、化合物 Hはシス形、化合物Iはトランス形である。化合物Cをオゾン分解したところ、化合物Jと化合物Kが得られた。また、化合物 Hをオゾン分解したところ、ベンズアルデヒドと化合物Lが得られた。化合物Jと化合物Lはフェーリング液を還元し赤色沈澱を生成した。化合物Kはフェーリング液を還元しなかったが、ヨードホルム反応は陽性だった。なお、オゾン分解の反応経路を図1に示す。
問2 化合物D、E、Kの化合物名を解答用紙に書きなさい。
この動画を見る 

鳥取大(医)方陣算?

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
方陣算を利用した問題

鳥取大(医)過去問
この動画を見る 

#藤田医科大学(2005) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n log(1+\displaystyle \frac{k}{n})^\frac{1}{n}$

出典:2005年藤田医科大学
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 
PAGE TOP