福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

問題文全文(内容文):
1(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
OR=         OA+         OC
である。

2021上智大学文系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
OR=         OA+         OC
である。

2021上智大学文系過去問
投稿日:2021.08.30

<関連動画>

【わかりやすく解説】位置ベクトル(内分・外分・重心)【数学B/平面ベクトル】

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
ABCにおいて、辺BC2:3に内分する点をD, 辺BC2:1に外分する点をEとし、三角形の重心をGとする。
AB=b,AC=cとするとき、次のベクトルをb,cを用いて表せ。

(1)AD
(2)AE
(3)AG
(4)GD
(5)DE
この動画を見る 

【数C】平面ベクトル:チェバメネの利用 △OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABにおいて、辺OAを3:2に内分する点をM、辺OBを3:1に内分する点をNとし、線分ANと線分BMの交点をPとする。OPをOA=aとOB=bを用いて表せ。
チェバメネラウスを使った解法版
この動画を見る 

【数C】ベクトルの基本⑪平面ベクトルのときの三角形の面積の計算

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(-2,1),B(3,0),C(2,4)が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #TK数学#TK数学問題集4#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)について、以下の問いに答えよ。
(2)頂点Aと辺BCの中点を通る直線のベクトル方程式を求めよ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
OHHPをx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
z22xy かつ 0x+y2
であることを示せ。
(3)1a2とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体(x,y,z)|(x,y,z)L,1x2の体積を求めよ。

2018神戸大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image