福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

問題文全文(内容文):
${\Large\boxed{1}}$ 
図(※動画参照)のように三角形$\rm ABC$の内部に半径$1$の円が5つ含まれている。4つの円は辺$\rm BC$に接しながら横一列に互いに接しながら並び、左端の円は辺$\rm AB$に接し、右端の円は辺$\rm AC$に接している。また、もう一つの円は、辺$\rm AB$と辺$\rm AC$に接し、4つの円の右側の2つの円に接している。このとき
$\textrm{AB}=\dfrac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\textrm{BC}$ 
$\rm AC=\dfrac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC$
$\rm BC=\dfrac{1}{\boxed{\ \ テト\ \ }}(\boxed{\ \ ケコ\ \ }+$$\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+$$\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }})$   $(\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })$
である。

2021慶應義塾大学環境情報学部過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
図(※動画参照)のように三角形$\rm ABC$の内部に半径$1$の円が5つ含まれている。4つの円は辺$\rm BC$に接しながら横一列に互いに接しながら並び、左端の円は辺$\rm AB$に接し、右端の円は辺$\rm AC$に接している。また、もう一つの円は、辺$\rm AB$と辺$\rm AC$に接し、4つの円の右側の2つの円に接している。このとき
$\textrm{AB}=\dfrac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\textrm{BC}$ 
$\rm AC=\dfrac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC$
$\rm BC=\dfrac{1}{\boxed{\ \ テト\ \ }}(\boxed{\ \ ケコ\ \ }+$$\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+$$\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }})$   $(\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })$
である。

2021慶應義塾大学環境情報学部過去問
投稿日:2021.06.29

<関連動画>

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを因数分解せよ.
$x^5+x+1$
この動画を見る 

早稲田大 対数 2次方程式 負の実数解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+(log_{a}2)x+log_{2}a^2=0$が相異なる負の解をもつ$a$の範囲は?
ただし、$a \gt 0,a \neq 1$

出典:1981年早稲田大学 過去問
この動画を見る 

数と式 集合の考え方【いつものシミズ君がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。$U$の部分集合A、Bについて
$A∩B={2}$ $A$(補集合)$∩B={4,6,8}$ $A$(補集合)$∩B$(補集合)$={1.9}$
であるとき、次の$∩$を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩B$(補集合)

$U={x|1≦x≦10、xは整数}$を全体集合とする。$U$の部分集合
$A={1,2,3,4,8},B={3,4,5,6},C{2,3,6,7}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩C$(補集合)
(4)$A$(補集合)$∩B∩C$(補集合)
(5)$(A∩B∩C)$(補集合)
(6)$(A∪C)∩B$(補集合)

$A={1、3、3a-2}$, $B={-5、a+2、a^2-2a+1}$,$A∩B={1、4}$のとき
定数aの値と和集合$A∪B$を求めよ。
この動画を見る 

阪大の証明問題!ぜひとも取りたい問題【数学 入試問題】【大阪大学 文系】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,辺$AB$の長さを$c$,辺$CA$の長さを$b$で表す。

$\angle ACB=3\angle ABC$であるとき,$c<3b$を示せ。

大阪大過去問
この動画を見る 

もっちゃんと数学

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\dfrac{5^{\sqrt3}}{25}\right)^{\sqrt{7+4\sqrt3}}$を計算せよ.
この動画を見る 
PAGE TOP