福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC   AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }}   (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC   AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }}   (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}

2021慶應義塾大学環境情報学部過去問
投稿日:2021.06.29

<関連動画>

名古屋大 分野不明

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$

(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.

2019名古屋大過去問
この動画を見る 

2023高校入試解説22問目  二乗の和で表せ①昭和学院秀英(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。

2023昭和学院秀英高等学校
この動画を見る 

【高校数学】条件の否定~例題と一緒に学ぼう~ 1-16【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x,y$は実数、$m,n$は整数とする。
次の条件の否定を述べよ。
(ア) $x+y \geqq 2 x+y \lt 2$
(イ) $m$は奇数である $m$は偶数である
(ウ) $x=0$かつ$y \neq 0$ $x \neq 0$または$y=0$
(エ) $x \gt 0$または$x \leqq -2$  $x \leqq 0$ かつ$x \gt -2$したがって$-2 \lt x \leqq 0$
(オ) $m,n$の少なくとも一方は5の倍数である。$m,n$はともに5の倍数でない。
この動画を見る 

【置き換え方を学ぶ!!】高校で出てくる展開(乗法の公式)と解き方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
展開(乗法の公式)と解き方について解説します。
$(2x-3y)^2$
$(3x+4y)(3x-4y)$
$(x-2)(x+3)$
$(a+b+c)^2$
$(3a+1)^2(3x-1)^2$
$(4x^2+y^2)(2x+y)(2x-y)$
この動画を見る 

【わかりやすく】高校で習う展開公式②(高校数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$(2x+y-3)^2$を展開せよ。
この動画を見る 
PAGE TOP