【数B】【数列】自然数の式の証明1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】自然数の式の証明1 ※問題文は概要欄

問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
投稿日:2025.04.28

<関連動画>

2024一橋大後期数学 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$m^2-n^2=10!$を満たす$(m,n)$の組は何組?

出典:2024年一橋大学後期数学 過去問
この動画を見る 

【高校数学】 数A-67 約数と倍数③

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問題1
次の数が自然数になるような最小の自然数$n$を求めよう.

①$\sqrt{270}n$

②$\sqrt{\dfrac{360}{n}}$

問題2
$\sqrt{n^2+8}$が自然数$m$になるような
自然数$m$と$n$の組み合わせを求めよう.
この動画を見る 

大学入試問題#229 大阪府立大学(2020) #整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n$:整数
$0 \leqq n \leqq m$
$3m^2+mn-2n^2$が素数となるような組$(m,n)$を全て求めよ。

出典:2020年大阪府立大学 入試問題
この動画を見る 

宮崎大 整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数Pを2進法で表したらすべての位の数が1でk桁であったkは素数であることを示せ.

宮崎大過去問
この動画を見る 

合同式の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
この動画を見る 
PAGE TOP