大学入試問題#423「よくみる問題?」 自治医科大学(2020) #面積 - 質問解決D.B.(データベース)

大学入試問題#423「よくみる問題?」 自治医科大学(2020) #面積

問題文全文(内容文):
$\sqrt{ \displaystyle \frac{x}{6} }+\sqrt{ \displaystyle \frac{y}{4} }=1$と$x$軸、$y$軸で囲まれた部分の面積を求めよ。

出典:2020年自治医科大学 入試問題
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{x}{6} }+\sqrt{ \displaystyle \frac{y}{4} }=1$と$x$軸、$y$軸で囲まれた部分の面積を求めよ。

出典:2020年自治医科大学 入試問題
投稿日:2023.01.15

<関連動画>

【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。

$0≦x≦1$のとき

$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る 

名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ

出典:2004年名古屋大学 過去問
この動画を見る 

福田の数学〜京都大学2025理系第3問〜関数の増減と値域

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$e$は自然対数の底とする。

$x\gt \dfrac{1}{\sqrt e}$において定義された次の関数

$f(x),g(x)$を考える。

$f(x)=x^2 \log x$

$g(x)=x^2\log x - \dfrac{1}{1+2\log x}$

実数$t$は$t\gt \dfrac{1}{\sqrt e}$を満たすとする。

曲線$y=f(x)$上の店$(t,f(t))$における接線に垂直で、

点$(t,g(t))$を通る直線を$l_t$とする。

直線$l_t$が$x$軸と交わる点の$x$座標を$p(t)$とする。

$t$が$\dfrac{1}{\sqrt e} \lt t \leqq e$の範囲を動くとき、

$p(t)$の取りうる値の範囲を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

東工大 秀才栗崎 解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e^x-x^e=k$の異なる正の解の個数を求めよ


出典:2013年東京工業大学 過去問
この動画を見る 

福田の数学〜中央大学2024理工学部第1問〜3つの関数の大小関係と絶対不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a$ を $1$ 以上の実数、$b$ を実数とし、関数 $f(x), \, g(x), \, h(x)$ を以下で定める。
$\displaystyle f(x)=-|2|x|-1|, \quad g(x)=ax+b, \quad h(x)=e^x$
$(1)$ すべての実数 $x$ に対して $f(x) \leq g(x)$ が成り立つ。$(a, \, b)$ の範囲は、条件 $a \geq 1$ の下では、$b \geq 1$ のとき $a \leq \fbox{ア}$ であり、$\frac{1}{2} \leq b \leq 1$ のとき $a \leq \fbox{イ}$ である。$b < \frac{1}{2}$ のとき条件を満たす $a$ は存在しない。
$(2)$ 実数$p$ に対し、$x=p$ における $y=h(x)$ の接線の方程式は $y=\fbox{ウ}$ である。したがって $a=e^p$ のとき、すべての実数 $x$ に対して $g(x) \leq h(x)$ が成り立つのは $b \leq \fbox{エ}$ のときであり、これは $a$ と $b$ の関係式として $b \leq \fbox{オ}$
$(3)$ すべての実数 $x$ に対し、$f(x) \leq g(x) \leq h(x)$ が成り立つような $(a, \, b)$ 全体のなす領域を $D$ とする。$D$ における $a$ の最大値は $\fbox{カ}$ である。また、$D$ の面積は $\fbox{キ}$ である。
この動画を見る 
PAGE TOP