対称式の連立三元三次方程式 - 質問解決D.B.(データベース)

対称式の連立三元三次方程式

問題文全文(内容文):
これを解け.$(x\leqq y\leqq z)$

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=4 \\
x^2+y^2+z^2=10\\
x^3+y^3+z^3=22 \\
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\leqq y\leqq z)$

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=4 \\
x^2+y^2+z^2=10\\
x^3+y^3+z^3=22 \\
\end{array}
\right.
\end{eqnarray}$
投稿日:2022.01.01

<関連動画>

【2つの解き方!】確率:東京都公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#東京都公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
袋の中には赤玉1個,白玉1個,青玉4個の合計6個の玉が入っている.
この袋の中には同時に2個の玉を取り出す.
2個とも青玉である確率を求めよ.
※どの玉が取り出されることも同様に確からしいものとする.

東京都公立高等学校
この動画を見る 

【数学検定】数学検定3級対策問題1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#数学検定・数学甲子園・数学オリンピック等#文字と式#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学検定3級対策問題1の解説動画です。
問題1.次の計算をしなさい。
(1) 9-(-5)+(-8)
(2) 24-16÷(-4)
(3) 2³+(-3)²
(4) 35/36 ÷ (-2/9) × 4/7
(5) √125-√45+√20
(6) (√3+4)²-24/√3
(7) 3(3x+5)+4(2x-7)
(8) 0.5(6x-1)-0.8(3x-4)
(9) 7(4x-5y)-2(9x+y)
(10) 3x-6y/8 - 2x-7y/12
(11) -5x²y × 9x²y²
(12) 13x³y²/5 ÷ (-4x²y/5) × (-2xy²/13)
この動画を見る 

中2数学「直角三角形の合同証明③」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~直角三角形の合同証明③

証明③例1 次の図のように正方形ABCDの辺BC上に、頂点B、Cと異なる点をとります、頂点A、Cから線分DEに垂線をひき、その交点をそれぞれP、Qとすると、△ADP≡△DCQであることを証明しなさい。

※図は動画内参照
この動画を見る 

【少しでも上手く…!】連立方程式:慶応義塾高等学校~全国入試問題解法

単元: #連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$a,b$を定数とする。$x,y$の連立方程式、
\begin{eqnarray}
\left\{
\begin{array}{l}
(a+2)x - (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
\end{eqnarray}
の解が$x = 3,y = 1$であるとき、$a,b$の値を求めよ。
この動画を見る 

【高校受験対策】数学-図形18

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#円#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
この動画を見る 
PAGE TOP