【数Ⅲ】【関数と極限】数列の極限2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】数列の極限2 ※問題文は概要欄

問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{\sqrt{n+5}-\sqrt{n+3}}{\sqrt{n+1}-\sqrt{n}}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{n}{\sqrt{n^2+2}-\sqrt{n}}$
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $ \displaystyle \lim_{ n \to \infty}\frac{\sqrt{n+5}-\sqrt{n+3}}{\sqrt{n+1}-\sqrt{n}}$
(2) $ \displaystyle \lim_{ n \to \infty}\frac{n}{\sqrt{n^2+2}-\sqrt{n}}$
投稿日:2025.05.18

<関連動画>

【高校数学】数Ⅲ-70 数列の極限⑥(無限等比数列)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}\dfrac{1-r^n}{1+r^n}(r \neq -1)$

②$\displaystyle \lim_{n\to\infty}\dfrac{r^{2n+1}}{1+r^{2n}}$
この動画を見る 

三角関数の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西医科大学過去問題
$\displaystyle\lim_{(x \to \pi)}\frac{sinx}{x^2-\pi^2}$
この動画を見る 

もっちゃんと真面目に数学 素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散のお話

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
この動画を見る 

林俊介 語りかける東大数学

アイキャッチ画像
単元: #対数関数#関数と極限
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$n\in Z+$

$g(x):=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x \vert \leq 1) \\
0 (\vert x \vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$f(x):$連続であり,$p,q \in R$

$\vert x\vert \leq \dfrac{1}{n}$でつねに$p\leq f(x)\leq q$
$p\leq n\dfrac{\displaystyle \int_{-1}^{1} g(nx) f(x) dx\leq q}{I}$を示せ.

(2)$h(x)=:\begin{eqnarray}
\left\{
\begin{array}{l}
-\dfrac{\pi}{2}\sin(\pi x) (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

次の極限を求めよ.

$\displaystyle \lim_{n\to\infty} n^2\displaystyle \int_{-1}^{1} h(nx)\log(1+e^{x+1})dx $

(1)$g(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$p\leq n \displaystyle \int_{-1}^{1} g(nx) f(x)dx \leq q$

2015東大過去問
この動画を見る 

【数Ⅲ】【関数と極限】初項1、公比1/7の無限等比級数の和Sと、初項から第n項までの部分和Snとの差が、初めて1/1000より小さくなるようなnの値を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項1、公比1/7の無限等比級数の和Sと、初項から第n項までの部分和Snとの差が、
初めて1/1000より小さくなるようなnの値を求めよ。
この動画を見る 
PAGE TOP