信州大 三角関数・微分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

信州大 三角関数・微分 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?

出典:2004年国立大学法人信州大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?

出典:2004年国立大学法人信州大学 過去問
投稿日:2019.03.02

<関連動画>

【わかりやすく】弧度法について解説(数学Ⅱ 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の角を弧度法で表せ。
(1)
$30^{ \circ }$

(2)
$45^{ \circ }$

(3)
$120^{ \circ }$

(4)
$-90^{ \circ }$

(5)
$108^{ \circ }$

(6)
$390^{ \circ }$

(7)
$\displaystyle \frac{\pi}{3}$

(8)
$\displaystyle \frac{7}{6}\pi$

(9)
$\displaystyle \frac{9}{4}\pi$

(10)
$-\displaystyle \frac{5}{12}n$

(11)
$\displaystyle \frac{11}{2}\pi$

(12)
$3$
この動画を見る 

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
この動画を見る 

東大医学部ベテランちが5浪TAWASHIに早稲田の数学の問題を解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
東大医学部のベテランちさんが、TAWASHIさんに早稲田大学の数学入試を解説します。

問題の解き方を理解しましょう!
この動画を見る 

京都大学 5倍角の公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.

1996京都大過去問
この動画を見る 

【高校数学】三角関数⑧~グラフで解く最大値・最小値~ 4-10【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の関数の最大値と最小値を求めよ。また、そのときのθの値を求めよ。
(1) y=sinθ-1(0≦θ≦$\displaystyle \frac{7π}{4}$)
(2) y=2cos(θ+$\displaystyle \frac{π}{3}$)(0≦θ≦π)
この動画を見る 
PAGE TOP