信州大 三角関数・微分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

信州大 三角関数・微分 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?

出典:2004年国立大学法人信州大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?

出典:2004年国立大学法人信州大学 過去問
投稿日:2019.03.02

<関連動画>

【高校数学】三角関数⑤~三角方程式の基礎~ 4-7【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0


次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0
この動画を見る 

福田の数学〜青山学院大学2025理工学部第3問〜三角関数のグラフと面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。

(1)$0\leqq x \leqq \pi$において、

曲線$y=f(x)$の概形を描け。

ただし、凹凸は調べなくてよい。

(2)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。

(3)$0\leqq x \leqq \pi$において、

$2$曲線$y=f(x),y=g(x)$で囲まれた図形の

面積$S$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

【数Ⅱ】三角関数:置換したときの解の個数を考える

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #チャート式#黄チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
この動画を見る 

和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
この動画を見る 

京都大 三角関数 4倍角の公式 最大値・最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(\theta)=\cos4\theta-4\sin^2\theta$
$0 \leqq \theta \leqq \displaystyle \frac{3}{4}\pi$における$f(\theta)$の最大値・最小値を求めよ

出典:2004年京都大学 過去問
この動画を見る 
PAGE TOP