図形の性質 4STEP数A 169,170,171 チェバメネラウス【中学受験のドラえもんがていねいに解説】 - 質問解決D.B.(データベース)

図形の性質 4STEP数A 169,170,171 チェバメネラウス【中学受験のドラえもんがていねいに解説】

問題文全文(内容文):
169(1):△ABCの辺AB、AC上に、それぞれ頂点と異なる点D、Eを取る時、等式【△ADE/△ABC】=【AD/AB】×【AE/AC】が成り立つことを証明せよ。
169(2):△ABCの辺BCを2:3、辺CAを3:1、辺ABを1:2に内分する点をそれぞれD、E、Fとする時、次の値を求めよ。
(ア)△AFE/△ABC  (イ)△DEF/△ABC
170:△ABCの辺ABを2:3に内分する点をR、辺ACを5:6に内分する点をQとする。線分BQと線分CRの交点をOとする。直線AOと辺BCの交点をPとする。
(1)BP:PCを求めよ。  (2)△OBC:△ABCを求めよ。
171:△ABCの辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとする。直線DEとBCの交点をPとする。
(1)BP:PCを求めよ。  (2)DP:PEを求めよ。
チャプター:

0:00 オープニング
0:05 チェバ・メネラウスの定理解説
4:15 169解説
8:30 170解説
11:22 171解説

単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質
指導講師: 理数個別チャンネル
問題文全文(内容文):
169(1):△ABCの辺AB、AC上に、それぞれ頂点と異なる点D、Eを取る時、等式【△ADE/△ABC】=【AD/AB】×【AE/AC】が成り立つことを証明せよ。
169(2):△ABCの辺BCを2:3、辺CAを3:1、辺ABを1:2に内分する点をそれぞれD、E、Fとする時、次の値を求めよ。
(ア)△AFE/△ABC  (イ)△DEF/△ABC
170:△ABCの辺ABを2:3に内分する点をR、辺ACを5:6に内分する点をQとする。線分BQと線分CRの交点をOとする。直線AOと辺BCの交点をPとする。
(1)BP:PCを求めよ。  (2)△OBC:△ABCを求めよ。
171:△ABCの辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとする。直線DEとBCの交点をPとする。
(1)BP:PCを求めよ。  (2)DP:PEを求めよ。
投稿日:2023.06.10

<関連動画>

【数A】整数の性質:不定方程式の解き方を徹底解説!

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
4x+5y=1を満たす整数解をすべて求めよ。
この動画を見る 

【理数個別の過去問解説】1968年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式ab+1≦abc≦bc+ca+ab+1をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
この動画を見る 

【数A】整数の性質:合同式② a,bは3で割り切れない整数とする。このとき、a⁴+a²b²+b⁴は3で割り切れることを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは3で割り切れない整数とする。このとき、a⁴+a²b²+b⁴は3で割り切れることを証明せよ。
この動画を見る 

福田の数学〜一橋大学2022年文系第1問〜2と3の累乗の積2個で2022を作る

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 2^a3^b+2^c3^d=2022を満たす0以上の整数a,b,c,dの組を求めよ。
\end{eqnarray}
この動画を見る 

【高校数学あるある】階乗の末尾に0はいくつ並ぶ? #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
150!の末尾が0の個数を求めよ。
この動画を見る 
PAGE TOP