大学入試問題 岡山県立大学2010 #不定積分 - 質問解決D.B.(データベース)

大学入試問題 岡山県立大学2010 #不定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\ x}{1+\cos\ 2x}dx$

出典:2010年岡山県立大学 入試問題
チャプター:

00:00 問題掲示
00:07 本編スタート
02:26 エンディング(楽曲提供:兄いえてぃ様)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\sin\ x}{1+\cos\ 2x}dx$

出典:2010年岡山県立大学 入試問題
投稿日:2022.08.01

<関連動画>

#関西学院大学2006#不定積分_68

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \dfrac{\sin x \cos x}{2+\cos \ x} dx$を解け.

2006関西学院大学過去問
この動画を見る 

大学入試問題#614「これは、時間内で解くのは大変かもしれない」 立命館大学(2023) #曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#立命館大学
指導講師: ますただ
問題文全文(内容文):
次の曲線の長さ$L$を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^4\theta \\
y=\sin^4\theta
\end{array}
\right.
\end{eqnarray}$
$(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2})$

出典:2023年立命館大学 入試問題
この動画を見る 

#関西大学2022#定積分_38

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt2} \dfrac{2\sqrt2}{x^2+2}dx$
を解け.

2022関西大学過去問題
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。

(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

大学入試問題#675「y軸回転はバームクーヘンから考えたくなる」久留米大学医学部(2010)

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=2x\sqrt{ 2-x^2 }$
$y=f(x)$のグラフと$x$軸とで囲まれる図形を$y$軸の周りに回転させてできる立体の体積を求めよ

出典:2010年久留米大学医学部 入試問題
この動画を見る 
PAGE TOP