福田のわかった数学〜高校3年生理系012〜極限(12)極限関数 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系012〜極限(12)極限関数

問題文全文(内容文):
$f(x)=\displaystyle\lim_{ n \to \infty }\displaystyle \frac{\tan^{2n+1} x-\tan^n x+1}{\tan^{2n+2} x+\tan^{2n} x+1}$

$(0 \leqq x \lt \displaystyle\frac{\pi}{2})$のグラフをかけ。
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\displaystyle\lim_{ n \to \infty }\displaystyle \frac{\tan^{2n+1} x-\tan^n x+1}{\tan^{2n+2} x+\tan^{2n} x+1}$

$(0 \leqq x \lt \displaystyle\frac{\pi}{2})$のグラフをかけ。
投稿日:2021.05.12

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)\ k \gt 0として、次の定積分を考える。\hspace{130pt}\\
F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx\\
このとき、F(2)=\log(\boxed{\ \ ア\ \ })となる。また、\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}\\
⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

【等比数列の極限!】無限等比級数の基礎と求め方を解説!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
無限等比級数の基礎と求め方を解説します。
この動画を見る 

ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ

出典:2019年九州大学 過去問
この動画を見る 

天才オイラーが解決した問題。奇数の平方の逆数の和にπが登場

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
奇数の平方の逆数の和にπが出る?
この動画を見る 

福田のわかった数学〜高校3年生理系022〜極限(22)関数の極限、三角関数の極限(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(2)
$\sin x$ を定義に従って微分せよ。
この動画を見る 
PAGE TOP