【高校数学】 数Ⅱ-11 分数式の計算④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-11 分数式の計算④

問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
投稿日:2015.04.22

<関連動画>

福田の数学〜立教大学2024年経済学部第1問(2)〜恒等式の未定係数を決定する方法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
等式$\frac{3x^2-x+4}{(x+1)^3}=\frac{a}{(z+1)^3}+\frac{b}{(x+1)^2}+\frac{c}{x+1}$が$x$についての恒等式となるような定数$a, b, c$は$a=\fbox{ウ}, b=\fbox{エ}, c=\fbox{オ}$である。
この動画を見る 

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

ε-N論法 #2 lim 1/n^2=0

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
この動画を見る 

福田のおもしろ数学283〜関数不等式を満たす関数を求める

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
任意の実数$x$、$y$、$z$に対して
$f(x+y)+f(y+z)+f(z+x) \geqq 3 f(x+2y+3z)$
が成り立つような実数値をとる関数 $f(x)$をすべて求めよ。
この動画を見る 

福田のおもしろ数学477〜イェンゼンの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

イェンゼンの不等式

$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、

$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$

$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$

な成り立つ。証明して下さい。
    
この動画を見る 
PAGE TOP