【高校数学】 数Ⅱ-11 分数式の計算④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-11 分数式の計算④

問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
投稿日:2015.04.22

<関連動画>

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の不等式を証明せよ。また、等号が成立する条件を求めよ。
ただし、a,b,c,dは全て正の数であるとする。
(1) $\displaystyle \frac{a+b}{2} \geqq \sqrt{ab}$

(2) $\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$

(3) $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$
この動画を見る 

【高校数学】 数Ⅱ-13 恒等式②

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。

①$\displaystyle \frac{a}{x+1}+\displaystyle \frac{b}{x+3}=\displaystyle \frac{x+9}{(x+1)(x+3)}$

②$\displaystyle \frac{3}{x^3-1}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{bx+c}{x^2+x+1}$
この動画を見る 

10進数に変換せずに答えを出そう!

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
11111(7)を6進法で表せ
\end{eqnarray}
$
この動画を見る 

京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。

(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る 

【高校数学】分数式の計算~どこよりも分かりやすく丁寧に~ 1-5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 
PAGE TOP