大阪市立大 漸化式 Japanese university entrance exam questions - 質問解決D.B.(データベース)

大阪市立大 漸化式 Japanese university entrance exam questions

問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
単元: #数列#漸化式#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪市立大学過去問題
n自然数
$a_1 = 1 \quad a_{n+1}>a_n$
$(a_{n+1}-a_n)^2= a_{n+1}+a_n$
投稿日:2018.06.25

<関連動画>

東京女子大 漸化式・数列の最大値

アイキャッチ画像
単元: #数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1$は7であり,$n^2a_{n+1}-(n+1)^2a_n=-n^2(n+1)^2$である.

(1)$a_n$の一般項を求めよ.

(2)$a_n$の最大値を求めよ.

東京女子大過去問
この動画を見る 

【数列】超基本的な問題です!解けますか?【甲南大学】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
9を分母とする正の既約分数で,100より小さいものの総和を求めよ。

甲南大過去問
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

北里大2020 分数型漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,a_{n+1}=\dfrac{4a_2+2}{a_n+5}$
一般項を求めよ.

2020北里大過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)数列\left\{a_n\right\},\left\{b_n\right\}(ただしa_1≠0かつa_1≠1)に対して1次関数\\
f_n(x)=a_nx+b_n (n=1,2,\ldots)\\
を定める。また、\alpha=a_1, \beta=b_1とおく。すべての自然数nに対して\\
(f_n◦f_1)(x)=f_{n+1}(x)\\
が成り立つとき、数列\left\{a_n\right\},\left\{b_n\right\}の一般項を\alphaと\betaの式で表すと\\
a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }\\
となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP