大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024) - 質問解決D.B.(データベース)

大学入試問題#899「初めてのベクトルやってみた」 #北海道大学(2024)

問題文全文(内容文):
三角形$OAB$が
$|\overrightarrow{ OA }|=3,$ $|\overrightarrow{ AB }|=5,$ $\overrightarrow{ OA }.\overrightarrow{ AB }=10$
を満たしているとする。
三角形$OAB$の内接円の中心を$I$とし、この内接円と辺$OA$の接点を$H$とする。

1.辺$OB$の長さを求めよ。
2.$\overrightarrow{ OI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
3.$\overrightarrow{ HI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。

出典:2024年北海道大学
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ますただ
問題文全文(内容文):
三角形$OAB$が
$|\overrightarrow{ OA }|=3,$ $|\overrightarrow{ AB }|=5,$ $\overrightarrow{ OA }.\overrightarrow{ AB }=10$
を満たしているとする。
三角形$OAB$の内接円の中心を$I$とし、この内接円と辺$OA$の接点を$H$とする。

1.辺$OB$の長さを求めよ。
2.$\overrightarrow{ OI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
3.$\overrightarrow{ HI }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。

出典:2024年北海道大学
投稿日:2024.08.09

<関連動画>

【数C】【ベクトルの内積】a| =|b| = 2, a - b = -2のとき、 a+bとa+tbが垂直になるように、 実数tの値を定めよ。

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|\vec{a}|=|\vec{b}|=2, \vec{a}\cdot\vec{b}=-2$のとき,
$\vec{a}+\vec{b}$と$\vec{a}+t\vec{b}$が垂直になるように,
実数tの値を定めよ。
この動画を見る 

【数B】ベクトル:直線と平面の交点

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直線$\dfrac{x-2}{4}=\dfrac{y-1}{-1}=z-3$と平面$x-4y+z=0$の交点を求めよ
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$△ABC$の辺$AB$,$BC$,$CA$を2:1に内分する点を、それぞれ$A_1$,$B1_1$,$C_1$とする。更に、$△A_1B_1C_1$の辺$A_1B_1$,$B_1C_1$を2:1に内分する点を、それぞれ$A_2$,$B_2$とする。このとき、$A_2B_2//AB$であることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。$\overrightarrow{ AB }=\overrightarrow{ b }$,$\overrightarrow{ AC }=\overrightarrow{ c }$とするとき、$\overrightarrow{ AP }$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ。
この動画を見る 

【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
この動画を見る 

福田の数学〜京都大学2025文系第5問〜平面が定点を通ることの証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#恒等式・等式・不等式の証明#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標空間の$4$点$O,A,B,C$同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、直線$OB$の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA},\quad \overrightarrow{ OM }=t\overrightarrow{ OB},\quad \overrightarrow{ ON }=u\overrightarrow{ OC }$

が成り立つようにとる。

$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点を通ることを示せ。

$2025$年京都大学文系過去問題
この動画を見る 
PAGE TOP