19京都府教員採用試験(数学:1番 複素数) - 質問解決D.B.(データベース)

19京都府教員採用試験(数学:1番 複素数)

問題文全文(内容文):
1⃣
(1)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3$
(2)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3+ \cdots + (\frac{-1+\sqrt 3 i }{2})^{3k+2}$
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣
(1)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3$
(2)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3+ \cdots + (\frac{-1+\sqrt 3 i }{2})^{3k+2}$
投稿日:2020.07.23

<関連動画>

【高校数学】数Ⅲ-20 三角形の形状①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数平面上の原点$O$と異なる2点$A,B$の表す複素数を
それぞれ$\alpha,\beta$とする.
等式$\alpha ^ 2 - \alpha\beta + \beta ^ 2 = 0$が成り立つとき,
次の問いに答えよ.

①複素数$\dfrac{\beta}{\alpha}$を求めよ.

②$△OAB$はどのような三角形か.
この動画を見る 

東海大(医)虚数の回転

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{13}{12}\pi+i\sin\dfrac{13}{12}\pi$を$a+bi$を中心に$\dfrac{\pi}{6}$回転すると,
$\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$となる.
実数$a,b$を求めよ.

東海大(医)過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

福田の数学〜立教大学2025理学部第1問(5)〜ド・モアブルの定理と複素数の計算

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)$i$を虚数単位とする。

実数$a,b$が等式

$\left(\dfrac{1}{\sqrt2}+\dfrac{1}{\sqrt2}i\right)^9+\left(\dfrac{1}{2}+\dfrac{\sqrt3}{2}i\right)^{11}=a+bi$

を満たすとき、$a=\boxed{ク},b=\boxed{ケ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 

04大阪府教員採用試験(数学:3番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣ $Z_1,Z_2 \in \mathbb{C}$
$|Z_1|=|Z_2|=|Z_1+Z_2|=1$ ⇒ $Z_1^{3}=Z_2^{3}$を示せ
この動画を見る 
PAGE TOP