重積分⑨-1【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-1【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
広義積分(重積分)
(1)$∬_D\frac{x}{\sqrt{x^2+y^2}}dxdy$
$D:x^2+y^2 \leqq 1 , x \geqq 0 , y\geqq 0$
(2)$∬_D\frac{1}{(x+1)^2(y+2)^2}dxdy$
$D:x \geqq 0 , y \geqq 0$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
広義積分(重積分)
(1)$∬_D\frac{x}{\sqrt{x^2+y^2}}dxdy$
$D:x^2+y^2 \leqq 1 , x \geqq 0 , y\geqq 0$
(2)$∬_D\frac{1}{(x+1)^2(y+2)^2}dxdy$
$D:x \geqq 0 , y \geqq 0$
投稿日:2020.11.15

<関連動画>

対数とみせて様々な知識を使う良問【数学 入試問題】【奈良県立医大】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。

奈良県立医大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。

2018神戸大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(4)〜三角形の面積の最大Part1

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)辺の長さが3,4,5の3角形がある。それぞれの辺の中点上に3つの点A,B,Cがあり、ある時刻から同時に動き出し、3点とも反時計回りに速さ1で3角形の周上を回る(ある辺から頂点に到達したらその頂点を含む別の辺へと進む)とする。3角形ABCの面積が最大になるときの面積を求めよ。
この動画を見る 

大阪公立大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
n自然数
$a_n=\frac{5^{2^{n-1}}-1}{2^{n+1}}$
$b_n=\frac{a_{n+1}}{a_n}$
示せ
①$b_n$は整数
②$a_n$は整数
③$a_n$は奇数
この動画を見る 

大学入試問題#831「教科書の章末問題」 #山形大学(2010) #三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: ますただ
問題文全文(内容文):
$\sin\displaystyle \frac{19}{12}\pi$の値を求めよ

出典:2010年山形大学
この動画を見る 
PAGE TOP