重積分⑨-1【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-1【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
広義積分(重積分)
(1)$∬_D\frac{x}{\sqrt{x^2+y^2}}dxdy$
$D:x^2+y^2 \leqq 1 , x \geqq 0 , y\geqq 0$
(2)$∬_D\frac{1}{(x+1)^2(y+2)^2}dxdy$
$D:x \geqq 0 , y \geqq 0$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
広義積分(重積分)
(1)$∬_D\frac{x}{\sqrt{x^2+y^2}}dxdy$
$D:x^2+y^2 \leqq 1 , x \geqq 0 , y\geqq 0$
(2)$∬_D\frac{1}{(x+1)^2(y+2)^2}dxdy$
$D:x \geqq 0 , y \geqq 0$
投稿日:2020.11.15

<関連動画>

福田の数学〜北海道大学2024年理系第3問〜関数方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問いに答えよ。
(1)$\alpha$ を実数とする。次のように定められた数列$\left\{a_n\right\}$ の一般項を求めよ。
$a_1$=$\alpha$, $a_{n+1}$=$\frac{1}{2}a_n$+1 ($n$=1,2,3,...)
(2)関数$f_1(x)$, $f_2(x)$, $f_3(x)$,... を次の関係式で定める。
$f_1(x)$=$3x$
$f_{n+1}(x)$=$(n+2)x^{n+1}$+$\displaystyle\left(\int_0^1f_n(t)dt\right)x$ ($n$=1,2,3,...)
関数$f_n(x)$を$x$と$n$の式で表せ。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(1)〜さいころの目の積が4の倍数になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(6)〜関数方程式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)2次式$f(x)$が$f(f(x))$=$f(x)^2$+1 を満たすとき$f(x)$=$\boxed{\ \ カ\ \ }$である。
この動画を見る 

京都大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ

出典:2017年京都大学 過去問
この動画を見る 

岩手大 複素数 ド・モアブルの定理 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^4-z^3+z^2-z+1=0$のすべての解を極形式で表せ
$\cos 36^{ \circ }$を求めよ

出典:2005年岩手大学 過去問
この動画を見る 
PAGE TOP