大学入試問題#104 一橋大学(2006) ベクトル - 質問解決D.B.(データベース)

大学入試問題#104 一橋大学(2006) ベクトル

問題文全文(内容文):
$|\vec{ a }|=5,|\vec{ b }|=3,|\vec{ c }|=1$
$\vec{ Z }=\vec{ a }+\vec{ b }+\vec{ c }$

(1)$|\vec{ Z }|$の最大値、最小値
(2)$\vec{ a }・\vec{ Z }=20$
をみたすとき
$|\vec{ Z }|$の最大値、最小値を求めよ

出典:2006年一橋大学 入試問題
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$|\vec{ a }|=5,|\vec{ b }|=3,|\vec{ c }|=1$
$\vec{ Z }=\vec{ a }+\vec{ b }+\vec{ c }$

(1)$|\vec{ Z }|$の最大値、最小値
(2)$\vec{ a }・\vec{ Z }=20$
をみたすとき
$|\vec{ Z }|$の最大値、最小値を求めよ

出典:2006年一橋大学 入試問題
投稿日:2022.01.31

<関連動画>

福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

【高校数学】 数B-11 ベクトルの成分④

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①ベクトル$\overrightarrow{ a }=(x-1)、\overrightarrow{ b }=(2,-3)$に対して、$\overrightarrow{ a }+3\overrightarrow{ b }$と$\overrightarrow{ b }-\overrightarrow{ a }$が平行になるように 実数xの値を定めよう。

②$\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(-4,3)$がある。実数tを変化させるとき、$\overrightarrow{ c }=\overrightarrow{ a }+t\overrightarrow{ b }$の大きさの最小値と、そのときのtの値を求めよう。
この動画を見る 

【数C】ベクトルの基本⑬内心ベクトルの求め方

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
角A=60°,AB=8,AC=5である三角形ABCの内心をIとする。AB=b,AC=cとするときAIをb,cを用いて表せ
この動画を見る 

【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ $\overrightarrow{ AC }+\overrightarrow{ BD }=2\overrightarrow{ AD }$



この動画を見る 
PAGE TOP