広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
広島大学過去問題

(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3  PとP+2がともに素数のときP+1は6の倍数であることを示せ。


不等式$log_2(x-1) \leqq log_4(2x-1)$
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題

(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3  PとP+2がともに素数のときP+1は6の倍数であることを示せ。


不等式$log_2(x-1) \leqq log_4(2x-1)$
投稿日:2018.07.28

<関連動画>

階乗に関する問題!! 24で割った余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1!+2!+3!+・・・+2022!
24で割った余りは?
この動画を見る 

慶應義塾高校 入試問題 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{3007}{3201}$を既約分数にせよ.

2020慶應義塾高過去問
この動画を見る 

北海道大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$を自然数とする.

(1)$\dfrac{3x}{x^2+2}$が自然数となる$x$を求めよ.
(2)$\dfrac{3x}{x^2+2}+\dfrac{1}{y}$が自然数となる$(x,y)$を求めよ.

2016北海道大過去問
この動画を見る 

海外数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p^3+q^3-3pq+1$が素数となる自然数$(p,q)$の組をすべて求めよ.

海外数学オリンピック過去問
この動画を見る 

2023高校入試解説39問目 整数問題 早稲田実業

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bは連続しない正の整数。
$(a-b)(a^2+b^2)=2023$を満たす
a,bの値=?

2023早稲田実業学校
この動画を見る 
PAGE TOP