問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.11