【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える - 質問解決D.B.(データベース)

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
チャプター:

0:00 オープニング
0:04 解説開始
4:09 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
投稿日:2023.03.04

<関連動画>

北里大 複素数の総和

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=-1+i$
$\displaystyle \sum_{n=1}^{12} z^n$

出典:2014年北里大学 過去問
この動画を見る 

同志社 整式が割り切れる条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
同志社大学過去問題
整式$x^{2n}+(x+1)^{2n}+1$が$x^2+x+1$で割り切れる自然数nの条件
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 

名古屋大 3次式の係数決定

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c$
$a,b,c$は整数
$f(\sqrt{ 2 })=0$
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$f(w)$は実数
$a,b,c$の値を求めよ

出典:2006年名古屋大学 過去問
この動画を見る 

学習院 複素数 絶対値の最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
複素数Z $(Z \neq 0)$
$ω=Z+\frac{1}{Z}+5$
|Z|=2
|ω|の最大値と最小値
この動画を見る 
PAGE TOP