大学入試問題#301 旭川医科大学(2011) #定積分 - 質問解決D.B.(データベース)

大学入試問題#301 旭川医科大学(2011) #定積分

問題文全文(内容文):
$0 \leqq x \lt \displaystyle \frac{\pi}{2}$
$\displaystyle \int_{0}^{x}(\displaystyle \frac{1}{\cos\ t}-\tan\ t)dt$

出典:2011年旭川医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \lt \displaystyle \frac{\pi}{2}$
$\displaystyle \int_{0}^{x}(\displaystyle \frac{1}{\cos\ t}-\tan\ t)dt$

出典:2011年旭川医科大学 入試問題
投稿日:2022.09.05

<関連動画>

千葉大 整式

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ

出典:2004年千葉大学 過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(2)〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}\ (2)t \geqq 0$に対して
$f(t)=2\pi\int_0^{2t}|x-t|\cos(2\pi x)dx-t\sin(4\pi t)$
と定義する。このとき、
$f(t)=0$
を満たすtのうち、閉区間[0,1]に属する相異なるものはいくつあるか

早稲田大学教育学部過去問
この動画を見る 

【化学】有機化学:2021年度慶應義塾大学薬学部問4(2) チャプター2

アイキャッチ画像
単元: #化学#有機#大学入試過去問(化学)#酸素を含む脂肪族化合物#芳香族化合物#慶應義塾大学#理科(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度慶應義塾大学薬学部問4(2) チャプター2
化合物Aは、水素原子、炭素原子、酸素原子のみから構成され、ベンゼン環を2個含む分子量500以下のエステルである。0.846gの化合物Aを完全燃焼すると、二酸化炭素2.51gと水0.594gを生じた。化合物Aに水酸化ナトリウム水溶液を加えて加熱し加水分解すると、化合物Bのナトリウム塩と化合物Cが生成した。化合物Bを過マンガン酸カリウムで酸化すると化合物Dが生成した。化合物Dと化合物Eを次々と縮合重合させると、高分子化合物Fが得られ、これは繊維として衣料品に用いられる他、樹脂としてペットボトルの原料となる。
一方、化合物Cに濃硫酸を加え170°Cで加熱したところ、化合物Cおよびその構造異性体H、Iが生成した。化合物Hと化合物Iはシスートランス異性体の関係にあり、化合物 Hはシス形、化合物Iはトランス形である。化合物Cをオゾン分解したところ、化合物Jと化合物Kが得られた。また、化合物 Hをオゾン分解したところ、ベンズアルデヒドと化合物Lが得られた。化合物Jと化合物Lはフェーリング液を還元し赤色沈澱を生成した。化合物Kはフェーリング液を還元しなかったが、ヨードホルム反応は陽性だった。なお、オゾン分解の反応経路を図1に示す。
問2 化合物D、E、Kの化合物名を解答用紙に書きなさい。
この動画を見る 

大学入試問題#470「誘導なくてもどうにかできそう」 信州大学 理・医学部(2021) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\forall\ a,b$
$f(a+b)=f(a)+f(b)+4ab$
$f'(0)=2$
(1)
$f(0)$を求めよ

(2)
$f(x)$は微分可能を示せ
$f(x)$を求めよ

(3)
$\displaystyle \lim_{ x \to \infty } \displaystyle \int_{1}^{x} \displaystyle \frac{1}{f(t)}dt(x \gt 1)$

出典:2021年信州大学 入試問題
この動画を見る 

大学入試問題#714「The basic integral problem」 青山学院大(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{5} \displaystyle \frac{dx}{(x+3)\sqrt{ x+1 }}$

出典:2021年青山学院大学 入試問題
この動画を見る 
PAGE TOP