関西大学 2011 - 質問解決D.B.(データベース)

関西大学 2011

問題文全文(内容文):
$\displaystyle \int_{1}^{e^2} \displaystyle \frac{1}{\sqrt{ x }} log_x\ dx$

出典:2011年関西大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e^2} \displaystyle \frac{1}{\sqrt{ x }} log_x\ dx$

出典:2011年関西大学
投稿日:2024.02.04

<関連動画>

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(3)〜九九の表の平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)九九の表(1の段から9の段まで)に現れる81個の数の平均値$\boxed{\ \ シス\ \ }$であり、
分散は小数第一位を四捨五入して整数で求めると$\boxed{\ \ セソタ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(2)〜同じものを含む順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)k a n g o g a k u の9文字すべてを並べてできる文字列の種類は全部で$\boxed{\ \ ウ\ \ }$通りであり、このうち子音と母音が交互に並ぶものは$\boxed{\ \ エ\ \ }$通りである。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

大学入試問題#119 横浜国立大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\displaystyle \frac{log(\sin\ x)}{\tan\ x}\ dx$を計算せよ。

出典:2020年横浜国立大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(5)〜複素数平面上の正n角形の頂点に関する性質

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(5)$n$は$n\geqq 3$を満たす自然数とする。

複素数$z$を$\cos\dfrac{2\pi}{n}+i\sin \dfrac{2\pi}{n}$とおき、

複素数平面において$z^k (0\leqq k \leqq n-1)$が表す点を

$P_k$とする。

ただし、$k$は整数、$i$は虚数単位とする。

(i)$n$個の点$P_0,P_1,P_2,\cdots P_{n-1}$を

頂点とする正$n$角形の面積を$S_n$とする。

$S_n$を$n$の式で表すと$S_n=\boxed{シ}$であり、

$\displaystyle \lim_{n\to\infty}S_n$を求めると$\boxed{ス}$である。

(ii)$\displaystyle \sum_{k=1}^{n-1} z^k$を求めると$\boxed{ス}$である。

(iii)$n=7$とする。

三角形$P_1P_2P_4$の重心を$A(\alpha)$、

三角形$P_3P_5P_6$の重心を$B(\beta)$とおく。

複素数$\alpha,\beta$を求めると、

$\alpha=\boxed{ソ},\beta=\boxed{タ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

福田の数学〜京都大学2025理系第6問〜確率確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$n$は$2$以上の整数とする。

$1$枚の硬貨を続けて$n$回投げる。

このとき、$k$回目$(1\leqq l \leqq n)$に表が出たら

$X_k=1$、裏が出たら$X_k=0$として、

$X_1,X_2,\cdots ,X_n$を定める。

$Y_n=\displaystyle \sum_{k-2}^{n} X_{k-1}X_k$とするとき、

$Y_n$が奇数である確率$p_n$を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 
PAGE TOP