問題文全文(内容文):
動画内図のように2つの関数$y= x^2$...①、$y= \displaystyle \frac{1}{3} x^2$・・・②のグラフがあります。
②のグラフ上に点Aがあり、点Aの$x$座標が正の数とします。
点Aを通り、$y$軸に平行な直線と①のグラフの交点をBとし、点Aと$y$軸について対称な点をCとします。
点0は原点とします。
【問】
1⃣
点Aの$x$座標が2のとき、点Cの座標を求めなさい。
2⃣
点Bの$x$座標が6のとき、2点B,Cを通る直線の傾きを求めなさい。
3⃣
点Aの$x$座標をtとします。
△ABCが直角二等辺三角形となるとき、tの値を求めよ。
動画内図のように2つの関数$y= x^2$...①、$y= \displaystyle \frac{1}{3} x^2$・・・②のグラフがあります。
②のグラフ上に点Aがあり、点Aの$x$座標が正の数とします。
点Aを通り、$y$軸に平行な直線と①のグラフの交点をBとし、点Aと$y$軸について対称な点をCとします。
点0は原点とします。
【問】
1⃣
点Aの$x$座標が2のとき、点Cの座標を求めなさい。
2⃣
点Bの$x$座標が6のとき、2点B,Cを通る直線の傾きを求めなさい。
3⃣
点Aの$x$座標をtとします。
△ABCが直角二等辺三角形となるとき、tの値を求めよ。
チャプター:
00:00 はじまり
00:18 問題だよ
00:35 問題解説(1)
02:20 問題解説(2)
04:15 問題解説(3)
08:26 まとめ
08:47 問題と答え
単元:
#数学(中学生)#中3数学#2次関数#北海道公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図のように2つの関数$y= x^2$...①、$y= \displaystyle \frac{1}{3} x^2$・・・②のグラフがあります。
②のグラフ上に点Aがあり、点Aの$x$座標が正の数とします。
点Aを通り、$y$軸に平行な直線と①のグラフの交点をBとし、点Aと$y$軸について対称な点をCとします。
点0は原点とします。
【問】
1⃣
点Aの$x$座標が2のとき、点Cの座標を求めなさい。
2⃣
点Bの$x$座標が6のとき、2点B,Cを通る直線の傾きを求めなさい。
3⃣
点Aの$x$座標をtとします。
△ABCが直角二等辺三角形となるとき、tの値を求めよ。
動画内図のように2つの関数$y= x^2$...①、$y= \displaystyle \frac{1}{3} x^2$・・・②のグラフがあります。
②のグラフ上に点Aがあり、点Aの$x$座標が正の数とします。
点Aを通り、$y$軸に平行な直線と①のグラフの交点をBとし、点Aと$y$軸について対称な点をCとします。
点0は原点とします。
【問】
1⃣
点Aの$x$座標が2のとき、点Cの座標を求めなさい。
2⃣
点Bの$x$座標が6のとき、2点B,Cを通る直線の傾きを求めなさい。
3⃣
点Aの$x$座標をtとします。
△ABCが直角二等辺三角形となるとき、tの値を求めよ。
投稿日:2020.11.12