【数C】【複素数平面】 極形式で表す ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】 極形式で表す ※問題文は概要欄

問題文全文(内容文):
次の複素数を 極形式で表せ。ただし、偏角θは0≦θ<2πとする。

(1)$\displaystyle \frac{4+3i}{1+7i}$

(2)$\sqrt{3}+\displaystyle \frac{1-i}{1+i}$

(3)$ー4(\cos \displaystyle \frac{π}{6} + i\sin \displaystyle \frac{π}{6})$

(4)$cos\displaystyle \frac{2π}{3}ーisin \displaystyle \frac{2π}{3}$

(5)$2(sin \displaystyle \frac{π}{3} + i cos \displaystyle \frac{π}{3})$
チャプター:

0:00 オープニング
0:04 極形式とは?
2:41 簡単な例で確認してみる!
5:30 (1)の解説
8:11 (2)の解説
9:44 (3)の解説
13:37 (4)の解説
18:55 (5)の解説
21:27 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学C#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を 極形式で表せ。ただし、偏角θは0≦θ<2πとする。

(1)$\displaystyle \frac{4+3i}{1+7i}$

(2)$\sqrt{3}+\displaystyle \frac{1-i}{1+i}$

(3)$ー4(\cos \displaystyle \frac{π}{6} + i\sin \displaystyle \frac{π}{6})$

(4)$cos\displaystyle \frac{2π}{3}ーisin \displaystyle \frac{2π}{3}$

(5)$2(sin \displaystyle \frac{π}{3} + i cos \displaystyle \frac{π}{3})$
投稿日:2025.01.21

<関連動画>

Euler's formula 中学生の知識でオイラーの公式を理解しよう 最終回

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学の地域でオイラーの公式を解説していきます.
この動画を見る 

奈良県教員採用試験「基本問題で良問!!」 #複素数

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$|\cos\theta+i\sin\theta-3+i|$の最大値、最小値を求めよ

出典:奈良県教員採用試験
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$f(x)=(x+2)(x-1)^{10}$とし、この式を展開して
$f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}$
と表す。ただし、$a_0,a_1,...,a_{11}$は定数である。
$(\textrm{a})$多項式$f(x)$を$x-2$で割った時の余りは$\boxed{ア}$である。
$(\textrm{b})a_{10}=-\ \boxed{イ}$である。
$(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{ウエオ}$である。
$(\textrm{d})\ \ \ \ f(i)=\boxed{カキ}-\boxed{クケ}\ i \ $である。ただし、$i$は虚数単位である。

2022明治大学理工学部過去問
この動画を見る 

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る 

山形大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\cos36°+i\sin36°$とする.

(1)$(x-1)(x-\alpha)(x-\alpha^2)・・・・・・(x-\alpha^9)$を計算せよ.
(2)$(x-1)(x-\alpha^2)(x-\alpha^4)(x-\alpha^6)(x-\alpha^8)$を計算せよ.
(3)$(x-\alpha)(x-\alpha^3)(x-\alpha^7)(x-\alpha^9)$を計算せよ.
(4)(3)を用いて\alpha+\dfrac{1}{\alpha}を計算せよ.

山形大過去問
この動画を見る 
PAGE TOP