【数Ⅲ】【極限】収束、発散について調べその和を求めよ (1)3-5/2+5/2-7/3+7/3-9/4+9/4-11/5+… (2)1+1/2+1/3+1/4+1/9+1/8+1/27+1/16+… - 質問解決D.B.(データベース)

【数Ⅲ】【極限】収束、発散について調べその和を求めよ (1)3-5/2+5/2-7/3+7/3-9/4+9/4-11/5+… (2)1+1/2+1/3+1/4+1/9+1/8+1/27+1/16+…

問題文全文(内容文):
次の無限級数の収束・発散について調べ、
収束する場合は、その和を求めよ。
$3 - \frac{5}{2} + \frac{5}{2} - \frac{7}{3} + \frac{7}{3} - \frac{9}{4} + \frac{9}{4}- \frac{11}{5}…$

$1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{9}+ \frac{1}{8} + \frac{1}{27} + \frac{1}{16} +…$
チャプター:

00:00 スタート(1)解説
02:11 (2)解説
03:54 エンディング

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の収束・発散について調べ、
収束する場合は、その和を求めよ。
$3 - \frac{5}{2} + \frac{5}{2} - \frac{7}{3} + \frac{7}{3} - \frac{9}{4} + \frac{9}{4}- \frac{11}{5}…$

$1+\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{9}+ \frac{1}{8} + \frac{1}{27} + \frac{1}{16} +…$
投稿日:2026.01.24

<関連動画>

大学入試問題#408 産業医科大学(2018) #定積分

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{-1} \displaystyle \frac{x^2+2x+1}{\sqrt{ -x^2-2x+1 }} dx$

出典:2018年産業医科大学 入試問題
この動画を見る 

福田の数学〜旧・東京工業大学、東京科学大学2025理系第1問〜逆関数の定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$$\quad$関数$f(x)$を$x\geqq 0$に対して

$f(x)=x\log(1+x)$と定める。

(1)不定積分$\displaystyle \int x\log(1+x)dx$を求めよ。

(2)$y=f(x) \quad (x\geqq 0)$の逆関数を

$y=g(x) \quad (x\geqq 0)$とする。

また、$a,b$を$g(a)=1,g(b)=2$となる

実数となる。

このとき定積分$I=\displaystyle \int_{a}{b} g(x)dx$の値を求めよ。

(3)関数$P(x)$を$x\geqq 0$に対して

$P(x)=\displaystyle \int_{0}^{x}\sqrt{1+f(t)dt}$と定める。

このとき、$y=P(x)$について、

定義域を$x\geqq 0$とする逆関数

$y=Q(x)$が微分可能であることは

説明なしに認めてよい。

関数$R(x)$を$x\geqq 0$に対して

$R(x)=\displaystyle int_{0}^{P(x)}\dfrac{1}{Q'(\upsilon)}$と定めるとき、

$R(x)$を求めよ。

図は動画内参照

$2025$年東京科学大学(旧・東京工業大学)理系過去問題
この動画を見る 

福田のおもしろ数学186〜自然数の桁数と対数の極限

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$$Nはn桁の自然数とする。$$
$$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{\log_{ 10 } N}{n}を求めよ。$$
この動画を見る 

大学入試問題#411「私学の医学科は3乗根の極限がお好き?」 藤田医科大学2022 #極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 8 } \displaystyle \frac{x^2-9x+8}{\sqrt[ 3 ]{ x }-2}$

出典:2022年藤田医科大学 入試問題
この動画を見る 

自然数の4乗の逆数の和 オイラー級数(Euler) やっぱりπが登場

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{1}{1^4}$+$\frac{1}{2^4}$+$\frac{1}{3^4}$+$\frac{1}{4^4}$+$\cdots$$\frac{1}{n^4}$=$\frac{\pi^4}{90}$
この動画を見る 
PAGE TOP