問題文全文(内容文):
実数$a$に対して関数$f(x)$を考える。
$f(x)=x^3-2x^2+(2a-1)x-2a$
$0\leqq a \leqq 1$のとき、
常に$f(x)\geqq 0$となる$x$の範囲を求めよ。
実数$a$に対して関数$f(x)$を考える。
$f(x)=x^3-2x^2+(2a-1)x-2a$
$0\leqq a \leqq 1$のとき、
常に$f(x)\geqq 0$となる$x$の範囲を求めよ。
単元:
#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
実数$a$に対して関数$f(x)$を考える。
$f(x)=x^3-2x^2+(2a-1)x-2a$
$0\leqq a \leqq 1$のとき、
常に$f(x)\geqq 0$となる$x$の範囲を求めよ。
実数$a$に対して関数$f(x)$を考える。
$f(x)=x^3-2x^2+(2a-1)x-2a$
$0\leqq a \leqq 1$のとき、
常に$f(x)\geqq 0$となる$x$の範囲を求めよ。
投稿日:2025.03.26





