【理数個別の過去問解説】2020年度北海道大学 数学 第3問(3)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2020年度北海道大学 数学 第3問(3)解説

問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。

(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
チャプター:

0:00 オープニング
0:24 問題解説開始
0:52 公倍数を考える
2:50 ポイント
3:27  ベン図
4:45 おまけ
5:34 エンディング

単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。

(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
投稿日:2023.06.08

<関連動画>

福田の一夜漬け数学〜順列・組合せ(3)〜一列に並べる(後編)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 6個の文字A,A,A,B,B,Cがある。
(1)6個全部を一列に並べるとき、並び方は何通りあるか。
(2)6個全部を一列に並べるとき、ABの順で隣り合って
 並ぶものが1個だけである並べ方は何通りあるか。
(3)4文字を選んで一列に並べる方法は何通りあるか。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第2問〜確率の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
$a,k,n$は正の整数で、$a \lt k$とする。袋の中にk個の玉が入っている。そのうち
a個は赤玉で、残りの$k-a$個は青玉である。
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色
の玉をn個袋に追加する」という操作を繰り返す。
$(\textrm{i})$1回目に赤玉が出たとき、2回目に赤玉が出る確率は$\boxed{\ \ ア\ \ }$である。
$(\textrm{ii})$2回目に赤玉が出る確率は$\boxed{\ \ イ\ \ }$である。
$(\textrm{iii})$2回目に青玉が出たとき、1回目に赤玉が出ていた確率は$\boxed{\ \ ウ\ \ }$である。
$(\textrm{iv})$この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点
を得るとき、得点の合計が4点となる確率は$\boxed{\ \ エ\ \ }$である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

【数A】場合の数:塗り分け! ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第4問〜くじ引きと条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ あるくじ引き店には、くじが10本入っている箱が5箱ある。5箱のうち4箱には当たりくじが1本、はずれくじが9本入っており、この4箱を「通常の箱」と呼ぶ。また、残りの1箱には当たりくじが5本、はずれくじが5本入っており、この箱を「有利な箱」と呼ぶ。通常の箱と有利な箱は見た目は同じであり、見分けることはできない。
(i)まず、Aが店に入り、5箱のうちの1箱を無作為に選び、その箱からくじを1本引いた。Aの選んだ箱が通常の箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。また、Aの選んだ箱が有利な箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。したがって、Aの引いたくじがはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{ク}}{\boxed{ケコ}}$である。
(ii)(i)の後、Aは引いたくじをもとの箱に戻し、よくかき混ぜたあと、同じ箱からもう一度くじを1本引いた。Aの引いたくじが1回目、2回目ともにはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
(iii)(ii)の後、Aは引いたくじをもとの箱に戻して店を出た。その後、BとCが店に入った。Bは5箱のうち1箱を無作為に選び、CはBが選ばなかった4箱の中から1箱を無作為に選んだ。BはAと同じように、自分の選んだ箱からくじを1本引き、それをもとの箱に戻し、よくかき混ぜた後、同じ箱からもう一度くじを1本引いた。また、Cは自分の選んだ箱からくじを1本引いた。Bの引いたくじが1回目、2回目ともにはずれであり、かつ、Cが引いたくじが当たりであったときに、Bの選んだ箱が有利な箱である確率は$\frac{\boxed{タチ}}{\boxed{ツテト}}$であり、Cの選んだ箱が有利な箱である確率は$\frac{\boxed{ナニヌ}}{\boxed{ネノハ}}$である。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも
できない。すると$w \gt w-17.5$であることから、B氏は努力水準を高めないことが
合理的な行動となる。
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。

(1)いま、A社は売上が500になったあときにはB氏の報酬を$w_1$に引き上げ、200のとき
には$w_0$に据え置くアイデアを思いついた。B氏が努力水準を高めるには、
$w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }$である必要がある。

次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、$w_1$と$w_0$を適切に
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、
A社の利潤の期待値を$\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }$以下とする必要がある。
また、A社の利潤の期待値が最大化された時、$w_1:w_0=5:4$を満たす$w_0$の値は
$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$

以下では、B氏の$w_0$の値をこの$w_0$の値をこの$\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }$とする。
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される
$10\sqrt w$であることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値
から差し引かれ、努力水準を高めたときのB氏の満足は$10\sqrt w-17.5$となる。
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、$w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }$

2021慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP