福田の1.5倍速演習〜合格する重要問題029〜九州大学2016年度理系第5問〜ドモアブルの定理と三角関数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題029〜九州大学2016年度理系第5問〜ドモアブルの定理と三角関数

問題文全文(内容文):
以下の問いに答えよ。
(1)$\theta$を$0 \leqq \theta \lt 2\pi$を満たす実数、iを虚数単位とし、$z=\cos\theta+i\sin\theta$で
表される複素数とする。このとき、整数nに対して次の式を証明せよ。
$\cos n\theta=\frac{1}{2}\left(z^n+\frac{1}{z^n}\right), \sin n\theta=-\frac{i}{2}\left(z^n-\frac{1}{z^n}\right)$

(2)次の方程式を満たす実数$x(0 \leqq x \lt 2\pi)$を求めよ。
$\cos x+\cos2x-\cos3x=1$

(3)次の式を証明せよ。
$\sin^220°+\sin^240°+\sin^260°+\sin^280°=\frac{9}{4}$

2016九州大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$\theta$を$0 \leqq \theta \lt 2\pi$を満たす実数、iを虚数単位とし、$z=\cos\theta+i\sin\theta$で
表される複素数とする。このとき、整数nに対して次の式を証明せよ。
$\cos n\theta=\frac{1}{2}\left(z^n+\frac{1}{z^n}\right), \sin n\theta=-\frac{i}{2}\left(z^n-\frac{1}{z^n}\right)$

(2)次の方程式を満たす実数$x(0 \leqq x \lt 2\pi)$を求めよ。
$\cos x+\cos2x-\cos3x=1$

(3)次の式を証明せよ。
$\sin^220°+\sin^240°+\sin^260°+\sin^280°=\frac{9}{4}$

2016九州大学理系過去問
投稿日:2022.12.14

<関連動画>

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
この動画を見る 

20年5月数学検定準1級1次試験(複素数)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#複素数平面#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
4⃣
$α=(-1+i)(i-\sqrt 3 i)$
(1)|α|を求めよ
(2)arg αを求めよ $0 \leqq arg α < 2\pi$
この動画を見る 

【数C】【複素数平面】高次方程式3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$z^6+z^3+1=0$の解を求めよ。ただし、解は 極形式のままでよい。
この動画を見る 

【数C】【複素数平面】基本公式と式変形 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z$が$3z+\bar{z}=2-2i$を満たすとき、以下の問いに答えよ。

(1)$3\bar{z}+z$を求めよ。

(2)$z$を求めよ。
この動画を見る 
PAGE TOP