福田の1.5倍速演習〜合格する重要問題029〜九州大学2016年度理系第5問〜ドモアブルの定理と三角関数 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題029〜九州大学2016年度理系第5問〜ドモアブルの定理と三角関数

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 以下の問いに答えよ。\\
(1)\ \thetaを0 \leqq \theta \lt 2\piを満たす実数、iを虚数単位とし、z=\cos\theta+i\sin\theta\ で\\
表される複素数とする。このとき、整数nに対して次の式を証明せよ。\\
\cos n\theta=\frac{1}{2}\left(z^n+\frac{1}{z^n}\right), \sin n\theta=-\frac{i}{2}\left(z^n-\frac{1}{z^n}\right)\\
\\
(2)次の方程式を満たす実数x(0 \leqq x \lt 2\pi)を求めよ。\\
\cos x+\cos2x-\cos3x=1\\
\\
(3)次の式を証明せよ。\\
\sin^220°+\sin^240°+\sin^260°+\sin^280°=\frac{9}{4}\\
\end{eqnarray}

2016九州大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 以下の問いに答えよ。\\
(1)\ \thetaを0 \leqq \theta \lt 2\piを満たす実数、iを虚数単位とし、z=\cos\theta+i\sin\theta\ で\\
表される複素数とする。このとき、整数nに対して次の式を証明せよ。\\
\cos n\theta=\frac{1}{2}\left(z^n+\frac{1}{z^n}\right), \sin n\theta=-\frac{i}{2}\left(z^n-\frac{1}{z^n}\right)\\
\\
(2)次の方程式を満たす実数x(0 \leqq x \lt 2\pi)を求めよ。\\
\cos x+\cos2x-\cos3x=1\\
\\
(3)次の式を証明せよ。\\
\sin^220°+\sin^240°+\sin^260°+\sin^280°=\frac{9}{4}\\
\end{eqnarray}

2016九州大学理系過去問
投稿日:2022.12.14

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $w$を$0$でない複素数、$x,y$を$w+\displaystyle \frac{1}{w}=x+yi$を満たす実数とする。
(1)実数$R$は$R \gt 1$を満たす定数とする。$w$が絶対値$R$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

(2)実数$\alpha$は$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$を満たす定数とする。$w$が偏角$\alpha$の複素数
全体を動くとき、$xy$平面上の点$(x,\ y)$の軌跡を求めよ。

京都大学過去問
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第3問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#積分とその応用#複素数平面#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。

(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。

(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。

(4)(3)の図形$K$の面積を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

九州大 3次方程式:2次方程式 有理数解

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos20^{ \circ }+i \sin 20^{ \circ }$
$\alpha = Z+\bar{ Z }$←共役な複素数

(1)
$\alpha$が解となる整数係数3次方程式は?

(2)
(1)の3次方程式は、3つの実数解をもち、そのすべては有理数でないことを示せ

(3)
有理数係数の2次方程式で$\alpha$を解に持つものはないことを示せ

出典:2000年九州大学 過去問
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP