福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

問題文全文(内容文):
3 rを実数とする。
次の条件によって定められる数列{an},{bn},{cn}を考える。
a1=r,an+1=[an]4+an4+56(n=1,2,3,)
b1=r,bn+1=bn2+712(n=1,2,3,)
c1=r,cn+1=cn2+56(n=1,2,3,)
ただし、[x]はxを超えない最大の整数とする。以下の問いに答えよ。
(1)limnbnlimncnを求めよ。
(2)bnancn(n=1,2,3,)を示せ。
(3)limnanを求めよ。

2022早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
3 rを実数とする。
次の条件によって定められる数列{an},{bn},{cn}を考える。
a1=r,an+1=[an]4+an4+56(n=1,2,3,)
b1=r,bn+1=bn2+712(n=1,2,3,)
c1=r,cn+1=cn2+56(n=1,2,3,)
ただし、[x]はxを超えない最大の整数とする。以下の問いに答えよ。
(1)limnbnlimncnを求めよ。
(2)bnancn(n=1,2,3,)を示せ。
(3)limnanを求めよ。

2022早稲田大学理工学部過去問
投稿日:2022.07.27

<関連動画>

福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数p,qを用いて
pq+qp
と表される素数を全て求めよ。

2016京都大学理系過去問
この動画を見る 

漸化式 香川大(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
x24x+1=0の解をα,β(α>β)とする.

(1)αn+βmは偶数であることを示せ.
(2)[αn]は奇数であることを示せ.

2018香川(医)過去問
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
3 実数が書かれた3枚のカード0,1,3から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積をznで表す。
(1)|zn|<5となる確率Pnを求めよ。
(2)zn2が実数となる確率Qnを求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
x=anを自転車がn回目に自宅を出発する時刻とし、y=bnをそのときの歩
行者の位置とする。

(1) 花子さんと太郎さんは、数列{an},{bn}の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
a1=2,b1=2により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は(    ,    )である。よって
a2=    , b2=    
である。

花子:数列{an},{bn}の一般項について考える前に、
(    ,    )の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
(an,0)であり、そのときの時刻と歩行者の位置を表す点の座標は
(an,bn)である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、an,bnを用いて、
(    ,    )と表せる。

    ,    の解答群(同じものを繰り返し選んでもよい。)
an ①bn ②2an
an+bn ④2bn ⑤3an
2an+bn ⑦an+2bn ⑧3bn

以上から、数列{an},{bn}について、自然数nに対して、関係式
an+1=an+     bn+     
bn+1=3bn+     
が成り立つことが分かる。まず、b1=2と②から
bn=     (n=1,2,3,)
を得る。この結果と、a1=2および1から
an=     (n=1,2,3,)
がわかる。

    ,     の解答群(同じものを繰り返し選んでもよい。)
3n1+1 ①123n+12
3n1+n ③123n+n12
3n1+n2 ⑤123n+n212
23n1 ⑦523n112
23n1+n1 ⑨523n1+n32
23n1+n21 ⓑ523n1+n232

(2)歩行者がy=300の位置に到着するときまでに、自転車が装甲車に追いつく
回数は    回である。また、    回目に自転車が歩行者に追いつく
時刻は、x=    である。

2022共通テスト数学過去問
この動画を見る 

慶應義塾大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
an=n3100nCn
bn=n22100nCn
(n=1,2,3100)

(1)
anが最大となるn

(2)
bnが最大となるn

出典:慶應義塾 過去問
この動画を見る 
PAGE TOP preload imagepreload image