福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(2) 逆関数の微分\\
\\
y=\tan x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
\\
の逆関数の第2次導関数を求めよ。
\end{eqnarray}
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(2) 逆関数の微分\\
\\
y=\tan x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
\\
の逆関数の第2次導関数を求めよ。
\end{eqnarray}
投稿日:2021.08.01

<関連動画>

福田のわかった数学〜高校3年生理系106〜変化率(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(1)\\
半径が毎秒1cmずつ増加する\\
球がある。半径が3cmとなる\\
瞬間の体積の増加する速さを求めよ。
\end{eqnarray}
この動画を見る 

東京電機大 最大値・最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.

東京電機大過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第2問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の各問いに答えよ。
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。
(2)$x≠0$を満たすすべての実数xに対して、$e^x \gt 1+x$と$e^{-x^2} \lt \frac{1}{1+x^2}$が
成り立つことを証明せよ。
(3)$\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}$が成り立つことを証明せよ。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面において原点Oを中心とする半径1の円を$C_1$とし、$C_1$の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円$C_2$が$C_1$上の点Qにおいて$C_1$に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)である$C_1$上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=$\boxed{\ \ あ\ \ }$となり、tの式で表すとr=$\boxed{\ \ い\ \ }$となる。
(2)円$C_2$と同じ半径をもち、x軸に関して円$C_2$と対称な位置にある円$C'_2$の中心P'とする。三角形POP'の面積はθ=$\boxed{\ \ う\ \ }$のとき最大値$\boxed{\ \ え\ \ }$をとる。θ=$\boxed{\ \ う\ \ }$は条件t=$\boxed{\ \ お\ \ }$と同値である。
(3)円$C_1$に内接し、円$C_2$と$C'_2$の両方に外接する円のうち大きい方を$C_3$とする。円$C_3$の半径bをtの式で表すとb=$\boxed{\ \ か\ \ }$となる。
(4)3つの円$C_2$, $C'_2$, $C_3$の周の長さの和はθ=$\boxed{\ \ き\ \ }$の最大値$\boxed{\ \ く\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 平均値の定理(2)\\
極限値\\
\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}\\
\\
を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP