福田の数学〜0と1の間に整数は存在しないなんて当たり前〜東京大学2018年文系第2問〜数列の増減と整数となる条件 - 質問解決D.B.(データベース)

福田の数学〜0と1の間に整数は存在しないなんて当たり前〜東京大学2018年文系第2問〜数列の増減と整数となる条件

問題文全文(内容文):
数列$a_{ 1},a_{ 2 }$,・・・を$a_{ n }=\displaystyle \frac{{}_2n \mathrm{ C }_n}{n!}$(n=1,2,・・・)で定める。
(1)$a_{ 7 }$と1の大小を調べよ。
(2)$n \geqq 2$とする。$\displaystyle \frac{a_{ n }}{a_{ n-1}}<1$を満たすnの範囲を求めよ。
(3)$a_{ n }$が整数となる$n \geqq 1$を全て求めよ。

2018東京大学文過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$a_{ 1},a_{ 2 }$,・・・を$a_{ n }=\displaystyle \frac{{}_2n \mathrm{ C }_n}{n!}$(n=1,2,・・・)で定める。
(1)$a_{ 7 }$と1の大小を調べよ。
(2)$n \geqq 2$とする。$\displaystyle \frac{a_{ n }}{a_{ n-1}}<1$を満たすnの範囲を求めよ。
(3)$a_{ n }$が整数となる$n \geqq 1$を全て求めよ。

2018東京大学文過去問
投稿日:2024.01.07

<関連動画>

京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$

出典:2002年京都大学 過去問
この動画を見る 

超不人気!確率漸化式だよ

アイキャッチ画像
単元: #数Ⅰ#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して確率$p(0\leqq P\leqq 1)$で$+1$, $1-p$で$+2$進む.
自然数nの地点に到達する確率$P_n$を求めよ.

大阪教育大過去問
この動画を見る 

大学入試問題#862「計算力と根性!」 #京都大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=3 \\
a_n=\displaystyle \frac{S_n}{n}+(n-1)・2^n
\end{array}
\right.
\end{eqnarray}$
を満たすような数列$\{a_n\}$の一般項を求めよ

出典:2023年京都大学 入試問題
この動画を見る 

福田の一夜漬け数学〜等差数列・等比数列(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項から第10項までの和が550,初項から第20項までの和が700である
等差数列$\left\{a_n\right\}$について
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の第20項から第30項までの和を求めよ。
(3)初項から第$n$項までの和$S_n$の最大値とそのときのnの値を求めよ。


初項から第4項までの和が45,初項から第8項までの和が765である
等比数列$\left\{a_n\right\}$を考える。
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の公比が正であるとき、数列$\left\{a_{2n-1}\right\}$はどのような数列か。
この動画を見る 

【数B】数列:隣接三項間型(重解) 次の条件によって定められる数列{an}の一般項を求めよ。a[1]=1,a[2]=5,a[n+2]+8a[n+1]+16a[n]=0

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
この動画を見る 
PAGE TOP