大学入試問題#660「合否をわける積分」 日本医科大学(2022) 定積分 - 質問解決D.B.(データベース)

大学入試問題#660「合否をわける積分」 日本医科大学(2022) 定積分

問題文全文(内容文):
12log2dtete2t1

出典:2022年日本医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
12log2dtete2t1

出典:2022年日本医科大学 入試問題
投稿日:2023.11.26

<関連動画>

合同式でさらっと 良問再投稿 弘前大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
52n1+72n1+232n1
35の倍数を示せ

(2)
33n2+53n1
7の倍数であることを示せ

出典:弘前大学 過去問
この動画を見る 

3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを自然数とする。3つの整数n2+2,n4+2,n6+2の最大公約数Anを求めよ。

京都大過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第4問〜確率漸化式と誤った答案に対する指摘

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の問題
問題
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が
終了する確率 pnを求めよ。
に対する次の答案Aについて以下の問いに答えよ。
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要
はない。誤りがないときは「誤りなし」と答えよ。
(2) 答案Aで導かれたp_nと正解のpnとで値が異なるとき、値が異なる最小のnを
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは
「すべて一致する」と答えよ。

答案A
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために
必要な回数がk回(k0)である確率をpn(k)とする。このとき、
kは0,1,2のいずれかであるから、確率の総和は
pn(0)+pn(1)+pn(2)=1
である。また、pn(0)=pn,pn+1(0)=12pn(1),pn+2(0)=14pn(2)であるから漸化式
pn+2pn+1+4pn+2=1 (n1)
を得る。ここで17+27+47=1なので、qn=2n(pn17)とすれば
qn+qn+1+qn+2=0
である。よってn4に対して
qn=qn1qn2=(qn2+qn3)qn2=qn3
が成立する。以上より、
Q(x)={q1 (n31)q2 (n32)q3      (n3)
とすれば求める確率は
pn=qn2n+17=Q(n)2n+17 (n4)
である。また最初の2項は定義よりp1=p2=0でありpnの漸化式でn=1とすれば
p1+2p2+4p3=1 であるからp3=14である。さらに
q1=27, q2=47, q3=67
である。したがって
p1=p2=0, p3=14, pn=Q(n)2n+17 (n4)
となる。

2022浜松医科大学医学部過去問
この動画を見る 

【京大解答速報】2019年数学(文系)大問1の解説~シノハラ京大塾【篠原好】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#整式の除法・分数式・二項定理#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【京大解答速報】「2019年数学(文系)大問1」について解説しています。
この動画を見る 

大学入試問題#69 高知大学(2012) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: ますただ
問題文全文(内容文):
各自然数nに対して
an>0
Sn=12an2+12an1をみたす一般項anを求めよ。

出典:2012年高知大学 入試問題
この動画を見る 
PAGE TOP preload imagepreload image