福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積

問題文全文(内容文):
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。

2023九州大学理系過去問
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。

2023九州大学理系過去問
投稿日:2023.06.14

<関連動画>

福田のおもしろ数学152〜2つの図形の面積を同時に2等分する直線が存在する証明

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数C
指導講師: 福田次郎
問題文全文(内容文):
次の2つの図形(※動画参照)の面積を同時に2等分する直線が存在することを証明せよ。
この動画を見る 

高専数学 微積I #229(2) 媒介変数表示関数のx軸回転体の体積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{2}$である.
$x=\sin t$
$y=\sin 2t$
と$x$軸で囲まれた図形を$x$軸のまわりに回転して
できる回転体の体積$V$を求めよ.
この動画を見る 

18岡山県教員使用試験(数学:5番 媒介変数表示のグラフ・面積)

アイキャッチ画像
単元: #平面上の曲線#その他#媒介変数表示と極座標#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ $ 0\leqq t\leqq \pi$,
$x=\cos t,y=\sin 2t+2\sin t$とする.

(1)曲線の概形
(2)曲線とx軸で囲まれた面積を求めよ.
この動画を見る 

大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
この動画を見る 
PAGE TOP