福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積 - 質問解決D.B.(データベース)

福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積

問題文全文(内容文):
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。

2023九州大学理系過去問
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。

2023九州大学理系過去問
投稿日:2023.06.14

<関連動画>

【高校数学】数Ⅲ-111 接線と法線④(媒介変数表示編)

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#接線と法線・平均値の定理#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$

②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
この動画を見る 

群馬大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#複素数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\displaystyle \frac{\sqrt{ 3 }-1}{2}+\displaystyle \frac{\sqrt{ 3 }+1}{2}i$

(1)
$\displaystyle \frac{z}{1+i}$を$a+bi$の形で表せ

(2)
$z$を極形式で表せ

(3)
$z^{12}$を求めよ

出典:2004年国立大学法人群馬大学 過去問
この動画を見る 

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$接線(2) 媒介変数表示の接線
$\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.$
で表される曲線の$\theta=\frac{3\pi}{2}$のときの点Pにおける接線を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

18岡山県教員使用試験(数学:5番 媒介変数表示のグラフ・面積)

アイキャッチ画像
単元: #平面上の曲線#その他#媒介変数表示と極座標#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ $ 0\leqq t\leqq \pi$,
$x=\cos t,y=\sin 2t+2\sin t$とする.

(1)曲線の概形
(2)曲線とx軸で囲まれた面積を求めよ.
この動画を見る 
PAGE TOP