東京医科大 融合問題(数Ⅲ不要) - 質問解決D.B.(データベース)

東京医科大 融合問題(数Ⅲ不要)

問題文全文(内容文):
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$

どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ

出典:東京医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$

どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ

出典:東京医科大学 過去問
投稿日:2020.02.07

<関連動画>

なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか?解説していきます.
この動画を見る 

九州大 COS7.5° 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z_1=\displaystyle \frac{1+i}{\sqrt{ 2 }},z_2=\displaystyle \frac{\sqrt{ 3 }+i}{2}$

(1)
$|z_1+z_2|$の値を求めよ

(2)
$\cos 7.5^{ \circ }$を求めよ

出典:1972年九州大学 過去問
この動画を見る 

自治医大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023自治医科大学過去問題
kは実数
$x^3-6x^2+kx-7 = 0$
の3つの解は複素数平面で1辺の長さが$\sqrt{3}$の正三角形の頂点となる
kの値
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$8^x=\frac{2^{56}-4^{26}}{30}$のときx=?
この動画を見る 

福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \gt 0,b \lt 0$とする。放物線C:$y=\dfrac{3}{2}x^2$上の点A(a,$\dfrac{3}{2}a^2$)と点B(b,$\dfrac{3}{2}b^2$)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標は$-\dfrac{\fbox{ア}}{\fbox{イ}}$である。
(2)a=2で、$\angle APB=\dfrac{\pi}{4}$とする。このとき、bの値は$-\dfrac{\fbox{ウ}}{\fbox{エオ}}$である。
(3)b=-aで、$\angle APB=\dfrac{\pi}{3}$とする。この時、aの値は$\dfrac{\sqrt{\fbox{カ}}}{\fbox{キ}}$である。また、PAを半径、$\angle APB$を中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差は$\dfrac{\fbox{ク}}{\fbox{ケ}}\pi-\dfrac{\fbox{コ}\sqrt{\fbox{サ}}}{\fbox{シ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP