問題文全文(内容文):
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$
どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ
出典:東京医科大学 過去問
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$
どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ
出典:東京医科大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$
どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ
出典:東京医科大学 過去問
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$
どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ
出典:東京医科大学 過去問
投稿日:2020.02.07