福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

問題文全文(内容文):
3 実数aに対してf(a)=12(2a2a)とおく。また、A=2aとする。
(1)等式(A1A)3=    (A1A)3    (A1A) より、実数aに対して
{f(a)}3=        f(3a)        f(a) ...①が成り立つ。
(2)実数a,bに対してf(a)=bが成り立つならば、A=2aは2次方程式
A2    bA    =0
を満たす。2a>0より、abを用いて
a=log2(    b+b2+    ) ...②
と表せる。つまり、任意の実数bに対してf(a)=bとなる実数aが、ただ1つに定まる。
以下、数列{an}に対してf(an)=bn (n=1,2,3,...)で定まる数列{bn}が、関係式
4bn+13+3bn+1bn=0 (n=1,2,3,...) ...③
を満たすとする。
(3)①と③からf(    an+1)=f(an) (n=1,2,3,...)となるので、(2)より、
an=a1    np (n=1,2,3,...)が得られる。ここで、p=    である。
(4)n≧2に対して、Sn=k=2n3k1bk3 とおく。cn=3nbn (n=1,2,3,...)で定まる数列{cn}の階差数列を用いると、③より、
Sn=        b1    n    bn (n=2,3,4,...)
となる。ゆえに、b1=43S5-108 が成り立つならばa1=    log2     である。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 実数aに対してf(a)=12(2a2a)とおく。また、A=2aとする。
(1)等式(A1A)3=    (A1A)3    (A1A) より、実数aに対して
{f(a)}3=        f(3a)        f(a) ...①が成り立つ。
(2)実数a,bに対してf(a)=bが成り立つならば、A=2aは2次方程式
A2    bA    =0
を満たす。2a>0より、abを用いて
a=log2(    b+b2+    ) ...②
と表せる。つまり、任意の実数bに対してf(a)=bとなる実数aが、ただ1つに定まる。
以下、数列{an}に対してf(an)=bn (n=1,2,3,...)で定まる数列{bn}が、関係式
4bn+13+3bn+1bn=0 (n=1,2,3,...) ...③
を満たすとする。
(3)①と③からf(    an+1)=f(an) (n=1,2,3,...)となるので、(2)より、
an=a1    np (n=1,2,3,...)が得られる。ここで、p=    である。
(4)n≧2に対して、Sn=k=2n3k1bk3 とおく。cn=3nbn (n=1,2,3,...)で定まる数列{cn}の階差数列を用いると、③より、
Sn=        b1    n    bn (n=2,3,4,...)
となる。ゆえに、b1=43S5-108 が成り立つならばa1=    log2     である。
投稿日:2024.06.30

<関連動画>

4乗根の計算

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x=84+44+24+1のとき,
1x4+4x3+6x2+4xの値を求めよ.
この動画を見る 

高校入試だけど指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
10205010の何倍か?

大妻嵐山高等学校
この動画を見る 

指数がルート

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(5553)5+3
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(6)〜指数方程式が解をもたない条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (6)aを実数とする。実数xの関数f(x)=4x+4x+a(2x+2x)+13a2-1 がある。
(i)t=2x+2xとおくときtの最小値は    であり、f(x)をtの式で表すと    である。
(ii)a=-3のとき、方程式f(x)=0の解をすべて求めると、x=    である。
(iii)方程式f(x)=0が実数解を持たないようなaの値の範囲は    である。
この動画を見る 

千葉大 三次関数と円 東大数学科卒の杉山さん

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#円と方程式#指数関数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
曲線y=x3xと円(xa2)+(ya)2=2a2の共有点が2つ
共有点のx座標は?
(a>0)

出典:千葉大学 過去問
この動画を見る 
PAGE TOP preload imagepreload image