【数Ⅰ】【数と式】因数分解4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】因数分解4 ※問題文は概要欄

問題文全文(内容文):
次の式を因数分解せよ
(1)$a^2 (b-c)+b^2(c-a)+c^2(a-b)$
(2)$(a+b)(b+c)(c+a)+abc$

次の式を因数分解せよ。
(1)$x^3-5x^2-4x+20$ (2)$8x^3+6x^2+3x+1$
(3)$x^2y+4y^2z-4y^3-x^2z$ (4)$a^4+a^2c-ab^3+abc+b^2c$
チャプター:

0:00 開始
0:06 整理の方針について補足
2:29 整理と因数分解
8:49 様々な因数分解

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ
(1)$a^2 (b-c)+b^2(c-a)+c^2(a-b)$
(2)$(a+b)(b+c)(c+a)+abc$

次の式を因数分解せよ。
(1)$x^3-5x^2-4x+20$ (2)$8x^3+6x^2+3x+1$
(3)$x^2y+4y^2z-4y^3-x^2z$ (4)$a^4+a^2c-ab^3+abc+b^2c$
投稿日:2024.11.05

<関連動画>

中央値 最頻値 平均値  A

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
生徒20人が借りた本の冊数について
正しいものを選べ
ア 合計40冊
イ 最頻値は1冊
ウ 中央値は2冊
エ 平均値より多くの本を借りたのは6人
*図は動画内参照
2021千葉県(改)
この動画を見る 

【#10】【因数分解100問】基礎から応用まで!(91)〜(95)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(91)$(3x-8)(16x+9)$
(92)$(25x-16)(4x+5)$
(93)$3(a+b)(b+c)(c+a)$
(94)$24xyz$
(95)$(x+y+2)(x-y-2)(x+y-2)(x-y+2)$
この動画を見る 

【数Ⅰ】集合と命題:実数全体を全体集合とし、その部分集合A, B, CをA={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} (kは定数)とする。

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数全体を全体集合とし、その部分集合A, B, Cを$A={x| -3≦x≦5}, B={x| |x|<4}, C={x| k-7≦x≦k+3} $(kは定数)とする。
(1)次の集合を求めよう。
(ア)Bバー
(イ)A∪Bバー
(ウ)A∩Bバー。
(2)A⊂Cとなるkの値の範囲を求めよう。
この動画を見る 

神戸大 3次方程式の基本問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#複素数平面#一次不等式(不等式・絶対値のある方程式・不等式)#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数である。
$x^3+ax^2+bx+c=0$は$\alpha=\dfrac{3+\sqrt{7}i}{2}$と0以上1以下の解をもつ(a,b,c)をすべて求めよ.

神戸大過去問
この動画を見る 

式の値 数I

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>0$ , $a^2+\frac{1}{a^2}=3$のとき
$a^3+ \frac{1}{a^3} = ?$

神奈川大学
この動画を見る 
PAGE TOP