【数学B/数列】(等差数列)×(等比数列)型の数列の和 - 質問解決D.B.(データベース)

【数学B/数列】(等差数列)×(等比数列)型の数列の和

問題文全文(内容文):
次の和$S$を求めよ。
$S=1・1+2・3+3・3^2+4・3^3+$
$…+n・3^{n-1}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和$S$を求めよ。
$S=1・1+2・3+3・3^2+4・3^3+$
$…+n・3^{n-1}$
投稿日:2022.01.04

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 

福田のおもしろ数学010〜10秒で解けるキミは天才〜階乗の和の1の位

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
この動画を見る 

数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{3n-1}-7^{2n-2}$は15の倍数であることを示せ
この動画を見る 

香川大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$S_{n}+na_{n}=1$
$a_{n},S_{n}$を$n$で表せ

出典:香川大学 過去問
この動画を見る 

無題

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ax+by=4$
$ax^2+by^2=2$
$ax^3+by^3=6$
$ax^4+by^4=38$
$ax^5+by^5=\Box$

これを解け.
この動画を見る 
PAGE TOP