慶応義塾大 指数方程式 - 質問解決D.B.(データベース)

慶応義塾大 指数方程式

問題文全文(内容文):
$8^x-6・4^x+5・2^x=k$が異なる3つの実数解をもつ$k$の範囲を求めよ

出典:慶應義塾大学 過去問
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-6・4^x+5・2^x=k$が異なる3つの実数解をもつ$k$の範囲を求めよ

出典:慶應義塾大学 過去問
投稿日:2020.03.21

<関連動画>

簡単な指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^x-3^x=\sqrt{6^x-9^x}$
これの実数解を求めよ.
この動画を見る 

これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):

$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$

$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$



$y=e^x$ $y^1=e^x$



動画内の図をみて求めよ



$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 

聖マリアンナ医大 4次関数と3次関数の共有点の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#対数関数#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数

出典:2010年聖マリアンナ医科大学 過去問
この動画を見る 

2022乗

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(5+2 \sqrt 6)^{1011}(\sqrt 3 - \sqrt 2)^{2022}$
この動画を見る 

大学入試問題#250 福井大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を0以上の整数とする。
次の2つの条件をみたす関数$f_n(x)$を求めよ。
(ⅰ)$f_0(x)=e^x$
(ⅱ)$f_n(x)=\displaystyle \int_{0}^{x}(n+t)f_{n-1}(t)dt$

出典:2012年福井大学 入試問題
この動画を見る 
PAGE TOP