福田のわかった数学〜高校3年生理系034〜極限(34)関数の極限、色々な極限(4) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系034〜極限(34)関数の極限、色々な極限(4)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(4)\\
\lim_{x \to 1}\frac{\sin\pi x}{x-1}\\
を2通りの方法で求めよ。
\end{eqnarray}
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(4)\\
\lim_{x \to 1}\frac{\sin\pi x}{x-1}\\
を2通りの方法で求めよ。
\end{eqnarray}
投稿日:2021.06.16

<関連動画>

福田のおもしろ数学341〜関数方程式を解く

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数から実数への関数$f(x)$が$f(x+y)=f(x)f(y)f(xy)$を満たしている。このような$f(x)$をすべて求めて下さい。
この動画を見る 

大学入試問題#453「落とせない問題」 信州大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{dx}{x(1+log\ x^3)log\ x}$

出典:2022年信州大学 入試問題
この動画を見る 

福田のおもしろ数学441〜ガウス記号を使って定義された数列の極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$a_n=\dfrac{1}{n^2} \displaystyle \sum_{k=1}^n [\sqrt{2n^2-k^2}]$とするとき、

$\displaystyle \lim_{n\to\infty} a_n$を求めて下さい。

$[x]$は$x$を超えない最大の整数とする。
   
この動画を見る 

09奈良県教員採用試験(数学:4番 積分)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
4⃣ $a_n = 1+ \frac{1}{2}+ \frac{1}{3}+ \cdots + \frac{1}{n} - logn$
(1)$a_n>0$を示せ。
(2)$\displaystyle \lim_{ n \to \infty } a_n $が存在することを示せ。
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第2問〜放物線の接線と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$m$を正の実数とし、関数$f(x)$を$f(x)=-mx^2+1$と定める。座標平面上の曲線$y=f(x)$を$C$とおき、負の実数$a$に対して点$\textrm{A}(a,f(a))$における曲線$C$の接線を$l_1$とおく。直線$l_1$と$y$軸との交点を$\textrm{P}$とし、点$\textrm{P}$を通り$l_1$に垂直な直線を$l_2$とおき、$l_2$と$x$軸の交点を$\textrm{Q}$とする。
(1) 点$\textrm{P}$の座標を$a$と$m$を用いて表せ。
(2) 点$\textrm{Q}$の座標を$a$と$m$を用いて表せ。

以下、直線$l_2$が曲線$C$の接線となるときを考える。
(3) $a$を$m$を用いて表せ。
(4) 線分$\textrm{AQ}$の長さは$m$を用いて表される。これを$L(m)$とおく。
(a) $\displaystyle \lim_{m \rightarrow \infty}L(m)$を求めよ。
(b) $\displaystyle \lim_{m \rightarrow 0}mL(m)$を求めよ。
この動画を見る 
PAGE TOP