福田のわかった数学〜高校2年生082〜三角関数(21)18°系の三角比(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生082〜三角関数(21)18°系の三角比(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
投稿日:2021.11.30

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 全統高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。θの方程式 sin(aθ)+√3cos(aθ)=1 ・・・(*) がある。
(1)sin(θ+π/3)をsinθ, cosθの式で表せ。
(2)a=1のとき、(*)を0≦θ<2πにおいて表せ。
(3)(*)のθ≧0を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。0≦θ<2πにおいて、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

2023京都大学 正五角形の一辺の長さ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1)\cos2\theta,\cos3\thetaを\cos\thetaを用いて表せ.
(2)半径1の円に内接する正五角形の一辺の長さと1.15の大小比較せよ.$
この動画を見る 

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(1)三角関数について、次の等式が成り立つ。\hspace{160pt}\\
\cos2θ=\boxed{\ \ アイ\ \ }\sin^2θ+\boxed{\ \ ウ\ \ }\hspace{160pt}\\
\sin3θ=\boxed{\ \ エオ\ \ }\sin^3θ+\boxed{\ \ カ\ \ }\sinθ\hspace{140pt}\\
(2)0 \leqq θ \lt 2\piのとき、関数\hspace{219pt}\\
y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ\hspace{160pt}\\
はθ=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\piで最小値\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シス\ \ }}をとり、\sinθ=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}のとき最大値\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\\
をとる。また、yの極致を与えるθの個数は\boxed{\ \ ナ\ \ }である。\hspace{110pt}
\end{eqnarray}
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large第1問}\\
[1](1)次の問題Aについて考えよう。\\
\boxed{\boxed{問題A} 関数y=\sin\theta+\sqrt3\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}\\
\\
\sin\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{1}{2}\\
であるから、三角関数の合成により\\
\\
y=\boxed{\ \ イ\ \ }\sin\left(\theta+\frac{\pi}{\boxed{\ \ ア\ \ }}\right)\\
\\
と変形できる。よって、yは\theta=\frac{\pi}{\boxed{\ \ ウ\ \ }}で最大値\ \boxed{\ \ エ\ \ }\ をとる。\\
\\
(2)pを定数とし、次の問題Bについて考えよう。\\
\boxed{\boxed{問題B} 関数y=\sin\theta+p\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}\\
\\
(\textrm{i}) p=0のとき、yは\theta=\frac{\pi}{\boxed{\ \ オ\ \ }}で最大値\ \boxed{\ \ カ\ \ }\ をとる。\\
(\textrm{ii}) p \gt 0のときは、加法定理\\
\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha\\
を用いると\\
y=\sin\theta+p\cos\theta=\sqrt{\boxed{\boxed{\ \ キ\ \ }}}\cos(\theta-\alpha)\\
と表すことができる。ただし、\alphaは\\
\sin\alpha=\frac{\boxed{\boxed{\ \ ク\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}、\cos\alpha=\frac{\boxed{\boxed{\ \ ケ\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}、0 \lt \alpha \lt \frac{\pi}{2}\\
を満たすものとする。このとき、yは\theta=\boxed{\boxed{\ \ コ\ \ }}で最大値\\
\sqrt{\boxed{\boxed{\ \ サ\ \ }}}をとる。\\
\\
(\textrm{iii}) p \lt 0のとき、yは\theta=\boxed{\boxed{\ \ シ\ \ }}で最大値\boxed{\boxed{\ \ ス\ \ }}をとる。\\
\\
\boxed{\boxed{\ \ キ\ \ }}~\boxed{\boxed{\ \ ケ\ \ }}、\boxed{\boxed{\ \ サ\ \ }}、\boxed{\boxed{\ \ ス\ \ }}の解答群(同じものを繰り返\\
し選んでもよい。)\\
⓪-1 ①1 ②-p \\
③p ④1-p ⑤1+p \\
⑥-p^2 ⑦p^2 ⑧1-p^2 \\
⑨1+p^2 ⓐ(1-p)^2 ⓑ(1+p)^2 \\
\\
\\
\boxed{\boxed{\ \ コ\ \ }}、\boxed{\boxed{\ \ シ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪0 ①\alpha ②\frac{\pi}{2} \\
\\
\\
[2]二つの関数f(x)=\frac{2^x+2^{-x}}{2}、g(x)=\frac{2^x-2^{-x}}{2}\ について考える。\\
\\
(1)f(0)=\boxed{\ \ セ\ \ }、g(0)=\boxed{\ \ ソ\ \ }である。また、f(x)は相加平均\\
と相乗平均の関係から、x=\boxed{\ \ タ\ \ }で最小値\ \boxed{\ \ チ\ \ }\ をとる。\\
g(x)=-2\ となるxの値は\log_2\left(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }\right)である。\\
\\
(3)次の①~④は、xにどのような値を代入しても常に成り立つ。\\
f(-x)=\boxed{\boxed{\ \ ト\ \ }} \cdots①\\
g(-x)=\boxed{\boxed{\ \ ナ\ \ }} \cdots②\\
\left\{f(x)\right\}^2-\left\{g(x)\right\}^2=\boxed{\ \ ニ\ \ } \cdots③\\
g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x) \cdots④\\
\\
\boxed{\boxed{\ \ ト\ \ }}、\boxed{\boxed{\ \ ナ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪f(x) ①-f(x) ②g(x) ③-g(x) \\
\\
\\
(3)花子さんと太郎さんは、f(x)とg(x)の性質について話している。\\
\\
花子:①~④は三角関数の性質に似ているね。\\
太郎:三角関数の加法定理に類似した式(\textrm{A})~(\textrm{D})を考えてみたけど、\\
常に成り立つ式はあるだろうか。\\
花子:成り立たない式を見つけるために、式(\textrm{A})~(\textrm{D})の\betaに何か具体\\
的な値を代入して調べてみたらどうかな。\\
\\
太郎さんが考えた式\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \cdots(\textrm{A})\\
f(\alpha+\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta) \cdots(\textrm{B})\\
g(\alpha-\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta) \cdots(\textrm{C})\\
g(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \cdots(\textrm{D})\\
\\
\\
(1),(2)で示されたことのいくつかを利用すると、式(\textrm{A})~(\textrm{D})のうち、\\
\boxed{\boxed{\ \ ネ\ \ }}以外の三つは成り立たないことが分かる。\boxed{\boxed{\ \ ネ\ \ }}は左辺と右辺\\
をそれぞれ計算することによって成り立つことが確かめられる。\\
\\
\boxed{\boxed{\ \ ネ\ \ }}の解答群\\
⓪(\textrm{A}) ①(\textrm{B}) ②(\textrm{C}) ③(\textrm{D}) 
\end{eqnarray}
この動画を見る 
PAGE TOP