早稲田 正多角形の内角 整数問題 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

早稲田 正多角形の内角 整数問題 Mathematics Japanese university entrance exam

問題文全文(内容文):
'93早稲田大学過去問題
正m角形の内角の大きさは正n角形の内角の大きさの$\frac{93}{92}$倍である
nの最大値・最小値を求めよ
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93早稲田大学過去問題
正m角形の内角の大きさは正n角形の内角の大きさの$\frac{93}{92}$倍である
nの最大値・最小値を求めよ
投稿日:2018.12.09

<関連動画>

整数問題 大阪府

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
・2020-nの値は93の倍数
・n-780の値は素数
自然数n=?

2020大阪府
この動画を見る 

素因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
この動画を見る 

大阪星光学院(改)整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#大阪聖光学院高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+11y^2=759$

出典:大阪星光学院中学校・高等学校 過去問
この動画を見る 

一橋大 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学過去問題
(1)$n^3+1$が3で割り切れるnをすべて求めよ。
(2)$n^n+1$が3で割り切れるnをすべて求めよ。
(1)(2)ともにnは自然数
この動画を見る 

奈良女子大 整数良問

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①自然数$n$が$b$と互いに素なら$n^2\equiv 1(mod 24)$
②$p^2-1=24q$を満たす素数$(p,q)$

2021奈良女子大過去問
この動画を見る 
PAGE TOP