福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大

問題文全文(内容文):
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。

(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。

2021立教大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。

(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。

2021立教大学理工学部過去問
投稿日:2021.10.07

<関連動画>

広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る 

【数Ⅱ】三角関数と方程式 2 sinとcosの1次方程式【合成して三角関数の個数を減らす】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\sin2x=\cos x$$(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1$$(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0$$(0\leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x cos x-1=0$$(0\leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x\cos x-1=0$$(0 \leqq x \lt 2\pi)$
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)0≦$x$<$\pi$のとき、方程式$\cos 3x$+$\cos x$=0 の解は$x$=$\boxed{\ \ イ\ \ }$である。
この動画を見る 

福田のわかった数学〜高校1年生061〜三角形の形状決定問題(2)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 三角形の形状決定(2)
次の等式が成り立つとき、$\triangle ABC$はどんな形の三角形か。
$\sin A\cos A=\sin B\cos B$
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 
PAGE TOP