【高校数学】 数Ⅰ-53 特殊な最大・最小② - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-53  特殊な最大・最小②

問題文全文(内容文):
◎x.yを変数とするとき、$x^2-4xy+7y^2-4y+3$の最小値とそのときのx、yの値を求めよう。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x.yを変数とするとき、$x^2-4xy+7y^2-4y+3$の最小値とそのときのx、yの値を求めよう。
投稿日:2014.08.26

<関連動画>

円周角の定理のなぜ?

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)
指導講師: 数学を数楽に
問題文全文(内容文):
円周角の定理
成り立つのはなぜ?
*図は動画内参照
この動画を見る 

姪(高1)からの質問

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{x+y}{3}=\frac{y+z}{6}=\frac{z+x}{7} \neq 0$
$\frac{x^3+y^3+z^3}{(x-y)(y-z)(z-x)}$
x,y,z正
$\frac{yz}{x}$=$\frac{zx}{4y}$=$\frac{xy}{9z}$
$\frac{x+y+z}{\sqrt{x^2+y^2+z^2}}$
この動画を見る 

【数Ⅰ】図形と計量:三角比への応用:「角の二等分線」の長さの求め方!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$AB=2,AC=3,A=60°$とし,$∠A$の二等分線と辺$BC$の交点を$D$とする。線分$AD$の長さを求めよ。
この動画を見る 

【数Ⅰ】数と式:複2次式の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解しよう。
(1)$x^4+x^2+1$
(2)$x^4+4x^2+16$
この動画を見る 

【高校数学】  数Ⅰ-87  余弦定理

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照

◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
この動画を見る 
PAGE TOP